BackgroundHuntington’s disease (HD) is a progressive, neurological disorder that results in both cognitive and physical impairments. These impairments affect an individual’s gait and, as the disease progresses, it significantly alters one’s stability. Previous research found that changes in stride time patterns can help delineate between healthy and pathological gait. Autoregressive (AR) modeling is a statistical technique that models the underlying temporal patterns in data. Here the AR models assessed differences in gait stride time pattern stability between the controls and individuals with HD. Differences in stride time pattern stability were determined based on the AR model coefficients and their placement on a stationarity triangle that provides a visual representation of how the patterns mean, variance and autocorrelation change with time. Thus, individuals who exhibit similar stride time pattern stability will reside in the same region of the stationarity triangle. It was hypothesized that individuals with HD would exhibit a more altered stride time pattern stability than the controls based on the AR model coefficients and their location in the stationarity triangle.MethodsSixteen control and twenty individuals with HD performed a five-minute walking protocol. Time series’ were constructed from consecutive stride times extracted during the protocol and a second order AR model was fit to the stride time series data. A two-sample t-test was performed on the stride time pattern data to identify differences between the control and HD groups.ResultsThe individuals with HD exhibited significantly altered stride time pattern stability than the controls based on their AR model coefficients (AR1 p < 0.001; AR2 p < 0.001).ConclusionsThe AR coefficients successfully delineated between the controls and individuals with HD. Individuals with HD resided closer to and within the oscillatory region of the stationarity triangle, which could be reflective of the oscillatory neuronal activity commonly observed in this population. The ability to quantitatively and visually detect differences in stride time behavior highlights the potential of this approach for identifying gait impairment in individuals with HD.
Purpose Peak vertical ground reaction force and linear loading rate can be valuable metrics for return-to-sport assessment because they represent limb loading dynamics; yet, there is no defined cutoff criterion to differentiate between healthy and altered limb loading. Studies have shown that healthy individuals exhibit strong first-order relationships between gait variables whereas individuals with pathological conditions did not. Thus, this study sought to explore and exploit this first-order relationship to define a region of healthy limb dynamics, which individuals with pathological conditions would reside outside of, to rapidly assess individuals with altered limb loading dynamics for return to sport. We hypothesized that there would be a strong first-order linear relationship between vertical ground reaction force peak force and linear loading rate in healthy controls’ limbs, which could be exploited to identify abnormal limb loading dynamics in post–anterior cruciate ligament reconstruction (ACLR) individuals. Methods Thirty-one post-ACLR individuals and 31 healthy controls performed a running protocol. A first-order regression analysis modeled the relationship between peak vertical ground reaction forces and linear vertical ground reaction force loading rate in the healthy control limbs to define a region of healthy dynamics to evaluate post-ACLR reconstructed limb dynamics. Results A first-order regression model aided in the determination of cutoff criteria to define a region of healthy limb dynamics. Ninety percent of the post-ACLR reconstructed limbs exhibited abnormal limb dynamics based on their location outside of the region of healthy dynamics. Conclusion This approach successfully delineated between healthy and abnormal limb loadings dynamics in controls and post-ACLR individuals. The findings demonstrate how force and loading rate–dependent metrics can help develop criteria for individualized post-ACLR return-to-sport assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.