The first proteomic analysis of Trypanosoma cruzi resistance to Benznidazole (BZ) is presented. The differential proteome of T. cruzi with selected in vivo resistance to Benznidazole (BZR and Clone27R), its susceptible pairs (BZS and Clone9S), and a pair from a population with Benznidazole- in vitro-induced resistance (17LER) and the susceptible pair 17WTS were analyzed by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS) for protein identification. Out of 137 spots analyzed through MS, 110 were identified as 56 distinct proteins. Out of the 56 distinct proteins, 36 were present in resistant, 9 in susceptible, and 11 in both phenotypes. Among the proteins identified in resistant samples, 5 were found in Cl 27R and in BZR (calpain-like cysteine peptidase, hypothetical protein conserved 26 kDa, putative peptidase, peroxiredoxin and tyrosine amino transferase) and 4 in Cl 27R and 17LER (cyclophilin A, glutamate dehydrogenase, iron superoxide dismutase and nucleoside diphosphate kinase). As for the proteins identified in Benznidazole-susceptible samples, PGF-2a was found in BZS and 17WTS. A functional category analysis showed that the proteins involved with transcription and protein destination were overexpressed for the Benznidazole-resistant phenotype. Thus, the present study provides large-scale, protein-related information for investigation of the mechanism of T. cruzi resistance to Benznidazole.
BackgroundVisceral leishmaniasis is the most severe form of leishmaniasis. Approximately 20% of zoonotic human visceral leishmaniasis worldwide is caused by Leishmania infantum, which is also known as Leishmania chagasi in Latin America, and disease incidence is increasing in urban and peri-urban areas of the tropics. In this form of disease, dogs are the main reservoirs. Diagnostic methods used to identify Leishmania infected animals are not able to detect all of the infected ones, which can compromise the effectiveness of disease control. Therefore, to contribute to the improvement of diagnostic methods for canine visceral leishmaniasis (CVL), we aimed to identify and test novel antigens using high-throughput analysis.Methodology/Principal FindingsImmunodominant proteins from L. infantum were mapped in silico to predict B cell epitopes, and the 360 predicted peptides were synthesized on cellulose membranes. Immunoassays were used to select the most reactive peptides, which were then investigated with canine sera. Next, the 10 most reactive peptides were synthesized using solid phase peptide synthesis protocol and tested using ELISA. The sensitivity and specificity of these peptides were also compared to the EIE-LVC Bio-Manguinhos kit, which is recommended by the Brazilian Ministry of Health for use in leishmaniasis control programs. The sensitivity and specificity of the selected synthesized peptides was as high as 88.70% and 95.00%, respectively, whereas the EIE-LVC kit had a sensitivity of 13.08% and 100.00% of specificity. Although the tests based on synthetic peptides were able to diagnose up to 94.80% of asymptomatic dogs with leishmaniasis, the EIE-LVC kit failed to detect the disease in any of the infected asymptomatic dogs.Conclusions/SignificanceOur study shows that ELISA using synthetic peptides is a technique with great potential for diagnosing CVL; furthermore, the use of these peptides in other diagnostic methodologies, such as immunochromatographic tests, could be beneficial to CVL control programs.
BackgroundVisceral leishmaniasis is the most severe form of leishmaniasis. Worldwide, approximately 20% of zoonotic human visceral leishmaniasis is caused by Leishmania infantum, also known as Leishmania chagasi in Latin America. Current diagnostic methods are not accurate enough to identify Leishmania-infected animals and may compromise the effectiveness of disease control. Therefore, we aimed to produce and test two recombinant multiepitope proteins as a means to improve and increase accuracy in the diagnosis of canine visceral leishmaniasis (CVL).Methodology/Principal FindingsTen antigenic peptides were identified by CVL ELISA in previous work. In the current proposal, the coding sequences of these ten peptides were assembled into a synthetic gene. Furthermore, other twenty peptides were selected from work by our group where good B and T cell epitopes were mapped. The coding sequences of these peptides were also assembled into a synthetic gene. Both genes have been cloned and expressed in Escherichia coli, producing two multiepitope recombinant proteins, PQ10 and PQ20. These antigens have been used in CVL ELISA and were able to identify asymptomatic dogs (80%) more effectively than EIE-LVC kit, produced by Bio-Manguinhos (0%) and DPP kit (10%). Moreover, our recombinant proteins presented an early detection (before PCR) of infected dogs, with positivities ranging from 23% to 65%, depending on the phase of infection in which sera were acquired.Conclusions/SignificanceOur study shows that ELISA using the multiepitope proteins PQ10 and PQ20 has great potential in early CVL diagnosis. The use of these proteins in other methodologies, such as immunochromatographic tests, could be beneficial mainly for the detection of asymptomatic dogs.
Identification of novel antigens is essential for developing new diagnostic tests and vaccines. We used DIGE to compare protein expression in amastigote and promastigote forms of Leishmania chagasi. Nine hundred amastigote and promastigote spots were visualized. Five amastigote-specific, 25 promastigote-specific, and 10 proteins shared by the two parasite stages were identified. Furthermore, 41 proteins were identified in the Western blot employing 2-DE and sera from infected dogs. From these proteins, 3 and 38 were reactive with IgM and total IgG, respectively. The proteins recognized by total IgG presented different patterns in terms of their recognition by IgG1 and/or IgG2 isotypes. All the proteins selected by Western blot were mapped for B-cell epitopes. One hundred and eighty peptides were submitted to SPOT synthesis and immunoassay. A total of 25 peptides were shown of interest for serodiagnosis to visceral leishmaniasis. In addition, all proteins identified in this study were mapped for T cell epitopes by using the NetCTL software, and candidates for vaccine development were selected. Therefore, a large-scale screening of L. chagasi proteome was performed to identify new B and T cell epitopes with potential use for developing diagnostic tests and vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.