We argue that the strategy of culling infected dogs is not the most efficient way to control zoonotic visceral leishmaniasis (ZVL) and that, in the presence of alternative control strategies with better potential results, official programs of compulsory culling adopted by some countries are inefficient and unethical. We base our arguments on a mathematical model for the study of control strategies against ZVL, which allows the comparison of the efficacies of 5, alternative strategies. We demonstrate that the culling program, previously questioned on both theoretical and practical grounds is the less effective control strategy. In addition, we show that vector control and the use of insecticide-impregnated dog collars are, by far, more efficient at reducing the prevalence of ZVL in humans.
Brazil is one of the highest endemic countries for Zoonotic Visceral Leishmaniasis: according to the Brazilian Ministry of Health, the annual number of new human cases and deaths due to this disease has been increasing for the last 20 years. In addition, regarding the Americas, the specific relationship between canine and human for Visceral Leishmaniasis dynamics is still not well understood. In this work we propose a new model for Zoonotic Visceral Leishmaniasis, based on the models previously published by Burattini et al. (1998) and Ribas et al. (2013). Herein, we modeled the disease dynamics using a modified set of differential equations from those two authors, considering the same assumptions (inclusion of human, dog and sandfly populations, all constants over time). From this set of equations we were able to calculate the basic reproduction number scriptR0 and to analyze the stability and sensitivity of the system to the parameters variability. As main result, when the stability of the system is reached, the normalized reporting human cases rate is estimated in 9.12E-08/day. This estimation is very close to the 2015 report from Araçatuba city, 5.69E-08/day. We also observed from stability and sensitivity analysis that the activity of sandfly population is critical to introduction and maintenance of Zoonotic Visceral Leishmaniasis in the population. In addition, the importance of dog as source of infection concentrates on latent dog, since it does not show clinical symptoms and signs and, therefore, has a great contribution to disease dissemination. As conclusion, considering the presently ethical issues regarding to elimination of positive dog in Brazil and the highly sensitivity of disease dynamics on sandfly population, we recommend that the sandfly population control should be prioritized.
Zoonotic Visceral Leishmaniasis (ZVL) is one of the world's deadliest and neglected infectious diseases, according to World Health Organization. This disease is one of major human and veterinary medical significance. The sandfly and the reservoir in urban areas remain among the major challenges for the control activities. In this paper, we evaluated five control strategies (positive dog elimination, insecticide impregnated dog collar, dog vaccination, dog treatment, and sandfly population control), considering disease control results and cost-effectiveness. We elaborated a mathematical model based on a set of differential equations in which three populations were represented (human, dog, and sandfly). Humans and dogs were divided into susceptible, latent, clinically ill, and recovery categories. Sandflies were divided into noninfected, infected, and infective. As the main conclusions, the insecticide impregnated dog collar was the strategy that presented the best combination between disease control and cost-effectiveness. But, depending on the population target, the control results and cost-effectiveness of each strategy may differ. More and detailed studies are needed, specially one which optimizes the control considering more than one strategy in activity.
a b s t r a c tUnderstanding mechanisms of cross-contamination during poultry processing is vital for effective pathogen control. As an initial step toward this goal, we develop a mathematical model of the chilling process in a typical high speed Canadian processing plant. An important attribute of our model is that it provides quantifiable links between processing control parameters and microbial levels, simplifying the complexity of these relationships for implementation into risk assessment models. We apply our model to generic, non-pathogenic Escherichia coli contamination on broiler carcasses, connecting microbial control with chlorine sanitization, organic load in the water, and pre-chiller E. coli levels on broiler carcasses. In particular, our results suggest that while chlorine control is important for reducing E. coli levels during chilling, it plays a less significant role in the management of cross-contamination issues.
O trabalho teve por objetivo a aplicação de uma metodologia de inspeção sanitária para estabelecimentos ambulantes de alimentos da zona urbana do Município de Ibiúna-SP. A pesquisa foi realizada no período de maio a novembro de 2006, com 57 vendedores ambulantes de alimentos de feiras livres e vias públicas, a partir da elaboração de roteiro de inspeção sanitária para vendedores ambulantes (RISVA), sua aplicação, realização de curso teórico específico e retorno aos estabelecimentos inspecionados. Os resultados obtidos na primeira inspeção em pontos médios foram de 46,28, e após as intervenções de 57,60. O desenvolvimento e a aplicação do RISVA permitiram a padronização das inspeções nos estabelecimentos ambulantes de alimentos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.