Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen-drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. MethodsWe estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen-drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drugresistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. FindingsOn the basis of our predictive statistical models, there were an estimated 4•95 million (3•62-6•57) deaths associated with bacterial AMR in 2019, including 1•27 million (95% UI 0•911-1•71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27•3 deaths per 100 000 (20•9-35•3), and lowest in Australasia, at 6•5 deaths (4•3-9•4) per 100 000. Lower respiratory infections accounted for more than 1•5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000-1 270 000) deaths attributable to AMR and 3•57 million (2•62-4•78) deaths associated with AMR in 2019. One pathogen-drug combination, meticillinresistant S aureus, caused more than 100 000 deaths attributa...
A surveillance program (SENTRY) of bloodstream infections (BSI) in the UnitedStates, Canada, Latin America, and Europe from 1997 through 1999 detected 1,184 episodes of candidemia in 71 medical centers (32 in the United States, 23 in Europe, 9 in Latin America, and 7 in Canada). Overall, 55% of the yeast BSIs were due to Candida albicans, followed by Candida glabrata and Candida parapsilosis (15%), Candida tropicalis (9%), and miscellaneous Candida spp. (6%). In the United States, 45% of candidemias were due to non-C. albicans species. C. glabrata (21%) was the most common non-C. albicans species in the United States, and the proportion of non-C. albicans BSIs was highest in Latin America (55%). C. albicans accounted for 60% of BSI in Canada and 58% in Europe. C. parapsilosis was the most common non-C. albicans species in Latin America (25%), Canada (16%), and Europe (17%). Isolates of C. albicans, C. parapsilosis, and C. tropicalis were all highly susceptible to fluconazole (97 to 100% at <8 g/ml). Likewise, 97 to 100% of these species were inhibited by <1 g/ml of ravuconazole (concentration at which 50% were inhibited [MIC 50 ], 0.007 to 0.03 g/ml) or voriconazole (MIC 50 , 0.007 to 0.06 g/ml). Both ravuconazole and voriconazole were significantly more active than fluconazole against C. glabrata (MIC 90 s of 0.5 to 1.0 g/ml versus 16 to 32 g/ml, respectively). A trend of increased susceptibility of C. glabrata to fluconazole was noted over the three-year period. The percentage of C. glabrata isolates susceptible to fluconazole increased from 48% in 1997 to 84% in 1999, and MIC 50 s decreased from 16 to 4 g/ml. A similar trend was documented in both the Americas (57 to 84% susceptible) and Europe (22 to 80% susceptible). Some geographic differences in susceptibility to triazole were observed with Canadian isolates generally more susceptible than isolates from the United States and Europe. These observations suggest susceptibility patterns and trends among yeast isolates from BSI and raise additional questions that can be answered only by continued surveillance and clinical investigations of the type reported here (SENTRY Program).
As part of the SENTRY Antimicrobial Surveillance Program, a total of 1078 Acinetobacter species and 842 Stenotrophomonas maltophilia isolates were collected between January 1997 and December 1999 from 5 geographic regions (Canada, the United States, Latin America, Europe, and the Asia-Pacific). The frequency of infections (by geographic region and body site), including those due to imipenem-resistant Acinetobacter species and trimethoprim-sulfamethoxazole (TMP-SMZ)-resistant S. maltophilia, was evaluated. The possibility of seasonal variations in bloodstream infections caused by Acinetobacter species was studied, as was the activity of several therapeutic antimicrobials against all strains. Acinetobacter species and S. maltophilia were most frequently associated with pulmonary infections, independent of the region evaluated. In contrast, patterns of antimicrobial resistance markedly varied among distinct geographic regions, especially for nosocomial isolates. Although the carbapenems were the most active antimicrobials against Acinetobacter species, nearly 11.0% of the nosocomial isolates were resistant to this drug group in both regions. TMP-SMZ, ticarcillin-clavulanic acid, gatifloxacin, and trovafloxacin were the only agents with consistent therapeutic activity against S. maltophilia isolates. Rates of resistance to TMP-SMZ ranged from 2% in Canada and Latin America to 10% in Europe. The geographic differences in resistance patterns among Acinetobacter species and S. maltophilia isolates observed in this study emphasize the importance of local surveillance in determining the most adequate therapy for acinetobacter and S. maltophilia infections and the possible clonal, epidemic nature of occurrence.
Limited data are available on Chryseobacterium spp. leading to an evaluation of the patient demographics and susceptibility patterns for Chryseobacterium spp. collected in the first 5 years of the SENTRY Antimicrobial Surveillance Program (1997 to 2001). Fifty isolates (24 Chryseobacterium meningosepticum, 20 Chryseobacterium indologenes, two Chryseobacterium gleum, and 4 Chryseobacterium spp. isolates) were collected. The highest Chryseobacterium prevalence was detected among the elderly. The most active antimicrobials were the newer quinolones (garenoxacin, gatifloxacin, and levofloxacin, each with a MIC at which 90 percent of the isolates are inhibited [MIC 90 ] of 1 g/ml and 98.0% susceptibility) followed by rifampin (MIC 90 , 2 g/ml and 85.7% susceptibility). Trimethoprim-sulfamethoxazole, ciprofloxacin, and piperacillin-tazobactam also showed reasonable activity; vancomycin showed poor potency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.