Utilisation of sodium (Na +) containing alkali in the neutralisation of acidic industrial process waters rich in sulphate (SO4 2-) produces effluents high in sodium sulphate (Na2SO4) reluctant to precipitate. Discharge of the saline effluents leads to permanent chemical stratification of the recipient freshwater systems, which prevents their annual overturn and the subsequent oxygen supply to hypolimnion. Novel and sustainable technologies are desperately needed to prevent the hazardous environmental impacts of saline effluents. We investigated the ability of anionic nanofibrillated cellulose (NFC) gels of three different consistencies to recover solubilised Na + and SO4 2from authentic circumneutral mining water onto a solid phase. The water was treated with the NFC gels in three sequential batches at three sorbent-to-solution ratios. NFC-induced changes in the ion concentrations were determined to calculate the Na + and SO4 2retention capacity and purification efficiency of the NFC gels. All NFC gels efficiently and coincidentally removed Na + and SO4 2from the mining water. We concluded that Na + ions electrostatically adsorbed onto the deprotonated carboxyl groups of the anionic NFC and attracted SO4 2ions which also acted as bridging anions between the neighbouring nanofibrils. Decrease in the consistency of the NFC gel enhanced accessibility of the sorption sites and, consequently, promoted the ion retention. A high sorbent-to-solution ratio favoured the intermolecular interactions within the NFC gels, thus decreasing the number of available sorption sites. A high ionic strength of the effluent favoured the ion retention, indicating that anionic NFC is particularly suitable for the treatment of highly saline solutions. The best purification result was obtained at a moderate sorbent-to-solution ratio with a dilute NFC gel. This lowers the demand for the cellulose raw material and the treatment expenses. We conclude that anionic NFC, made of renewable materials, may serve as an efficient and sustainable purification agent for removal and recycling of highly soluble Na + and SO4 2from industrial effluents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.