Whether amphetamine acts principally at the plasma membrane or at synaptic vesicles is controversial. We find that d-amphetamine injection into the Planorbis giant dopamine neuron causes robust dopamine release, demonstrating that specific amphetamine uptake is not required. Arguing for action at vesicles, whole-cell capillary electrophoresis of single Planorbis dopamine neurons shows that amphetamine reduces vesicular dopamine, while amphetamine reduces quantal dopamine release from PC12 cells by > 50% per vesicle. Intracellular injection of dopamine into the Planorbis dopamine neuron produces rapid nomifensine-sensitive release, showing that an increased substrate concentration gradient is sufficient to induce release. These experiments indicate that amphetamine acts at the vesicular level where it redistributes dopamine to the cytosol, promoting reverse transport, and dopamine release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.