Abstract:The metabolism of [U-13 C]lactate (1 mM) in the presence of unlabeled glucose (2.5 mM) was investigated in glutamatergic cerebellar granule cells, cerebellar astrocytes, and corresponding co-cultures. It was evident that lactate is primarily a neuronal substrate and that lactate produced glycolytically from glucose in astrocytes serves as a substrate in neurons. Alanine was highly enriched with 13 C in the neurons, whereas this was not the case in the astrocytes. Moreover, the cellular content and the amount of alanine released into the medium were higher in neurons than astrocytes. On incubation of the different cell types in medium containing alanine (1 mM), the astrocytes exhibited the highest level of accumulation. Altogether, these results indicate a preferential synthesis and release of alanine in glutamatergic neurons and uptake in cerebellar astrocytes. A new functional role of alanine may be suggested as a carrier of nitrogen from glutamatergic neurons to astrocytes, a transport that may operate to provide ammonia for glutamine synthesis in astrocytes and dispose of ammonia generated by the glutaminase reaction in glutamatergic neurons. Hence, a model of a glutamate-glutamine/lactate-alanine shuttle is presented. To elucidate if this hypothesis is compatible with the pattern of alanine metabolism observed in the astrocytes and neurons from cerebellum, the cells were incubated in a medium containing [ 15 N]alanine (1 mM) and [5-15 N]glutamine (0.5 mM), respectively. Additionally, neurons were incubated with [U-13 C]glutamine to estimate the magnitude of glutamine conversion to glutamate. Alanine was labeled from [5-15 N]glutamine to 3.3% and [U-13 C]glutamate generated from [U-13 C]glutamine was labeled to 16%. In spite of the modest labeling in alanine, it is clear that nitrogen from ammonia is transferred to alanine via transamination with glutamate formed by reductive amination of ␣-ketoglutarate. With regard to the astrocytic part of the shuttle, glutamine was labeled to 22% in one nitrogen atom whereas 3.2% was labeled in two when astrocytes were incubated in [ 15 N]alanine. Moreover, in co-cultures, [U-13 C]alanine labeled glutamate and glutamine equally, whereas [U-13 C]lactate preferentially labeled glutamate. Altogether, these results support the role proposed above of alanine as a possible ammonia nitrogen carrier between glutamatergic neurons and surrounding astrocytes and they show that lactate is preferentially metabolized in neurons and alanine in astrocytes. Key Words: Glucose -Magnetic resonance spectroscopy-Gas chromatography/mass spectrometry.
SummaryThe truncated mutant form of the charged multivesicular body protein 2B (CHMP2B) is causative for frontotemporal dementia linked to chromosome 3 (FTD3). CHMP2B is a constituent of the endosomal sorting complex required for transport (ESCRT) and, when mutated, disrupts endosome-to-lysosome trafficking and substrate degradation. To understand the underlying molecular pathology, FTD3 patient induced pluripotent stem cells (iPSCs) were differentiated into forebrain-type cortical neurons. FTD3 neurons exhibited abnormal endosomes, as previously shown in patients. Moreover, mitochondria of FTD3 neurons displayed defective cristae formation, accompanied by deficiencies in mitochondrial respiration and increased levels of reactive oxygen. In addition, we provide evidence for perturbed iron homeostasis, presenting an in vitro patient-specific model to study the effects of iron accumulation in neurodegenerative diseases. All phenotypes observed in FTD3 neurons were rescued in CRISPR/Cas9-edited isogenic controls. These findings illustrate the relevance of our patient-specific in vitro models and open up possibilities for drug target development.
Net synthesis of the neurotransmitter amino acids glutamate and GABA can take place either from glutamine or from alpha-ketoglutarate or another tricarboxylic acid (TCA) cycle intermediate plus an amino acid as donor of the amino group. Since neurons lack the enzymes glutamine synthetase and pyruvate carboxylase that are expressed only in astrocytes, trafficking of these metabolites must take place between neurons and astrocytes. Moreover, it is likely that astrocytes play an important role in maintaining the energy status in neurons supplying energy substrates, e.g., in the form of lactate. The role of trafficking of glutamine, TCA cycle constituents as well as the role of lactate as an energy source in neurons is discussed. Using [U-13C] lactate and NMR spectroscopy, it is shown that lactate that can be produced in astrocytes can be taken up into neurons and metabolized through the TCA-cycle leading to labeling of TCA cycle intermediates plus amino acids derived from these. The labeling pattern of glutamate and GABA indicates that C atoms from lactate remain in the cycle for several turns and that GABA formation may involve more than one glutamate pool, i.e., that compartmentation may exist. Additionally, a possible role of citrate as a chelator of Zn++ with regard to neuronal excitation is discussed. Astrocytes produce large quantities of citrate which by chelation of Zn++ alters the excitable state of neurons via regulation of N-methyl-D-aspartate receptor activity. Thus, astrocytes may regulate neuronal activity at a number of different levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.