For the simulation of fiber systems, there exist several stochastic models: systems of straight nonoverlapping fibers, systems of overlapping bending fibers, or fiber systems created by sedimentation. However, there is a lack of models providing dense, nonoverlapping fiber systems with a given random orientation distribution and a controllable level of bending. We introduce a new stochastic model in this paper that generalizes the force-biased packing approach to fibers represented as chains of balls. The starting configuration is modeled using random walks, where two parameters in the multivariate von Mises-Fisher orientation distribution control the bending. The points of the random walk are associated with a radius and the current orientation. The resulting chains of balls are interpreted as fibers. The final fiber configuration is obtained as an equilibrium between repulsion forces avoiding crossing fibers and recover forces ensuring the fiber structure. This approach provides high volume fractions up to 72.0075%.
In this paper we present algorithms for measuring local characteristics of random fiber systems. The calculation of the local directions and radii is based on directional distance transforms and evaluation of the inertia moments and axes of the resulting extremities of the centralized, directed chords. The method provides continuous results while minimizing the runtime by using few sampled directions. Furthermore several steps of improvement for the computation of orientation and radius information are presented. The algorithms are evaluated using synthetic data and applied to images of real microstructures obtained by computer tomography.
In the area of tessellation models, there is an intense activity to fully understand the classical models of Voronoi, Laguerre and Johnson-Mehl. Still, these models are all simulations of isotropic growth and are therefore limited to very simple and partly convex cell shapes. The here considered microstructure of martensitic steel has a much more complex and highly non convex cell shape, requiring new tessellation models. This paper presents a new approach for anisotropic tessellation models that resolve to the well-studied cases of Laguerre and Johnson-Mehl for spherical germs. Much better reconstructions can be achieved with these models and thus more realistic microstructure simulations can be produced for materials widely used in industry like martensitic and bainitic steels.
SummaryThe recent booming of multiphoton imaging of collagen fibrils by means of second harmonic generation microscopy generates the need for the development and automation of quantitative methods for image analysis. Standard approaches sequentially analyse two-dimensional (2D) slices to gain knowledge on the spatial arrangement and dimension of the fibrils, whereas the reconstructed three-dimensional (3D) image yields better information about these characteristics. In this work, a 3D analysis method is proposed for second harmonic generation images of collagen fibrils, based on a recently developed 3D fibre quantification method. This analysis uses operators from mathematical morphology. The fibril structure is scanned with a directional distance transform. Inertia moments of the directional distances yield the main fibre orientation, corresponding to the main inertia axis. The collaboration of directional distances and fibre orientation delivers a geometrical estimate of the fibre radius. The results include local maps as well as global distribution of orientation and radius of the fibrils over the 3D image. They also bring a segmentation of the image into foreground and background, as well as a classification of the foreground pixels into the preferred orientations. This accurate determination of the spatial arrangement of the fibrils within a 3D data set
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.