Exposure to different organisms (bacteria, mold, virus, protozoan, helminths, among others) can induce epigenetic changes affecting the modulation of immune responses and consequently increasing the susceptibility to inflammatory diseases. Epigenomic regulatory features are highly affected during embryonic development and are responsible for the expression or repression of different genes associated with cell development and targeting/conducting immune responses. The well-known, “window of opportunity” that includes maternal and post-natal environmental exposures, which include maternal infections, microbiota, diet, drugs, and pollutant exposures are of fundamental importance to immune modulation and these events are almost always accompanied by epigenetic changes. Recently, it has been shown that these alterations could be involved in both risk and protection of allergic diseases through mechanisms, such as DNA methylation and histone modifications, which can enhance Th2 responses and maintain memory Th2 cells or decrease Treg cells differentiation. In addition, epigenetic changes may differ according to the microbial agent involved and may even influence different asthma or allergy phenotypes. In this review, we discuss how exposure to different organisms, including bacteria, viruses, and helminths can lead to epigenetic modulations and how this correlates with allergic diseases considering different genetic backgrounds of several ancestral populations.
Brazil is a middle-income country undergoing the epidemiological transition. Effects of changes in daily life habits and access to clean water, sanitation and urban services on a growing urban population have contributed to a double burden of both infectious and noncommunicable chronic diseases. Studies have indicated that parasite infections may modulate the human immune system and influence the development of allergic conditions such as asthma. However, there is no consensus in the published literature on the effects of parasitic infections on allergy, perhaps as a consequence of factors determining the epidemiology of these infections that vary between populations such as age of first infection, duration and chronicity of infections, parasite burden and species, and host genetic susceptibility. In this review, we discuss the observations from Brazil concerning the relationship between parasite infections and allergy.
Accumulated evidence supports the contribution of genetic factors in modulating airway function, especially ancestry. We investigated whether genetic polymorphisms can affect lung function in a mixed Brazilian child population using the admixture mapping strategy through RFMix software version 1.5.4 (Stanford University, Stanford, CA, USA), followed by fine mapping, to identify regions whereby local African or European ancestry is associated with lung function measured by the forced expiratory volume in the first second (FEV1)/forced vital capacity (FVC) ratio, an indicator of airway obstruction. The research cohort included 958 individuals aged 4 to 11 years enrolled in the SCAALA (Social Change, Asthma, Allergy in Latin America) Program. We identified that African ancestry at 17q21.31, 10q22.2, and 2p23.1 regions was associated with lower lung function measured by FEV1/FVC p < 1.9 × 10−4. In contrast, European ancestry at 17q21.31 showed an opposite effect. Fine mapping pointed out 5 single nucleotide polymorphisms (SNPs) also associated in our replication cohort (rs10999948, rs373831475, rs8068257, rs6744555, and rs1520322). Our results suggest that genomic regions associated with ancestry may contribute to differences in lung function measurements in African American children in Brazil replicated in a cohort of Brazilian adults. The analysis strategy used in this work is especially important for phenotypes, such as lung function, which has considerable disparities in terms of measurements across different populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.