Docosahexaenoic acid (DHA), also known as omega-3 (n-3) polyunsaturated fatty acid (PUFA), is a natural compound that has demonstrated pharmacological activity against several malignant neoplasms. Available cancer treatments cause side effects, affect healthy cells, reduce the quality of life of patients and may cause resistance to antineoplastics. For these reasons, the search for new therapies is continuous. This narrative review aimed to compile information on in vitro experiments that study the cytotoxic effect of DHA or molecules derived from DHA in tumor and nontumor cells. This was performed to highlight the potential of DHA as a strategy for cancer therapy and to gather information, which will help researchers plan experimental designs and develop research to discover effective therapies against cancer. In addition, studies were presented that demonstrate the dose of DHA that can treat patients with cancer. Thus, a search was conducted for articles on the SCOPUS and Web of Science platforms, published until 2022, that analyzed the action of DHA against breast, lung, colorectal, prostate, stomach and liver cancers. Cytotoxic effects were observed in tumor and nontumor cell lines, and these results varied with the type of cell line studied, drug concentration, incubation time and treatment combination, i.e., with DHA alone, combined with other drugs and with molecules derived from DHA. In patients with cancer, in all analyzed studies, DHA intake was associated with eicosapentaenoic acid (EPA) and/or proteins to aid chemotherapy, and with this procedure, tumor reduction, chemotherapy tolerance and muscle mass gain were obtained. This work contributes to the community by demonstrating the possible applicability of DHA in the pharmaceutical area of oncological therapies.
A população ribeirinha da ilha de Jutuba, pertencente ao município de Belém, não possui abastecimento público de água, sendo obrigada a recorrer ao consumo das águas da Baia do Guajará, bacia que banha a ilha, porém que recebe diariamente o despejo in natura do esgoto da cidade. Nesta perspectiva, o objetivo deste trabalho é avaliar a qualidade da água da Baia do Guajará utilizada para o consumo humano pela população ribeirinha da Ilha de Jutuba. Foram avaliadas as variáveis: cor aparente, turbidez, potencial hidrogeniônico, alcalinidade, sólidos dissolvidos totais , condutividade elétrica, dureza total, coliformes totais e Escherichia coli. As análises das amostras demonstraram que somente as variáveis sólidos totais dissolvidos, dureza total e pH apresentaram valores apropriados para ingestão, enquanto a cor aparente, turbidez, coliformes totais e Escherichia coli inadequados aos limites de potabilidade nacional.
Chitosan is a non-cytotoxic polysaccharide that, upon hydrolysis, releases oligomers of different sizes that may have antioxidant, antimicrobial activity and the inhibition of cancer cell growth, among other applications. It is, therefore, a hydrolysis process with great biotechnological relevance. Thus, this study aims to use a crude enzyme concentrate (CEC) produced by a filamentous fungus to obtain oligomers with different molecular weights. The microorganism was cultivated in a liquid medium (modified Czapeck—with carboxymethylcellulose as enzyme inducer). The enzymes present in the CEC were identified by LC-MS/MS, with an emphasis on cellobiohydrolase (E.C 3.2.1.91). The fungus of the Aspergillus genus was identified by amplifying the ITS1-5.8S-ITS2 rDNA region and metaproteomic analysis, where the excreted enzymes were identified with sequence coverage greater than 84% to A. nidulans. Chitosan hydrolysis assays compared the CEC with the commercial enzyme (Celluclast 1.5 L®). The ability to reduce the initial molecular mass of chitosan by 47.80, 75.24, and 93.26% after 2.0, 5.0, and 24 h of reaction, respectively, was observed. FTIR analyses revealed lower absorbance of chitosan oligomers’ spectral signals, and their crystallinity was reduced after 3 h of hydrolysis. Based on these results, we can conclude that the crude enzyme concentrate showed a significant technological potential for obtaining chitosan oligomers of different sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.