Background: Recent studies point at functions of bradykinin in the CNS including neuromodulation and neuroprotection. Results: Bradykinin augments neurogenesis of neural stem cells from embryonic telencephalon, whereas bradykinin receptor inhibition promotes gliogenesis. Conclusion: Bradykinin acts as switch for phenotype determination using an in vitro system of migrating cells, closely reflecting conditions of cortex development. Significance: Novel functions are described for bradykinin with therapeutic relevance.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by decreased dopamine bioavailability in the substantia nigra and the striatum. Taking into account that adenosine-5’-triphosphate (ATP) and its metabolites are intensely released in the 6-hydroxydopamine (6-OHDA) animal model of PD, screening of purinergic receptor gene expression was performed. Effects of pharmacological P2Y6 or P2X7 receptor antagonism were studied in preventing or reversing hemiparkinsonian behavior and dopaminergic deficits in this animal model. P2X7 receptor antagonism with Brilliant Blue G (BBG) at a dose of 75 mg/kg re-established the dopaminergic nigrostriatal pathway in rats injured with 6-OHDA. Selective P2Y6 receptor antagonism by MRS2578 prevented dopaminergic neuron death in SH-SY5Y cells in vitro and in vivo in the substantia nigra of rats injured with 6-OHDA. Moreover, in vivo analysis showed that both treatments were accompanied by a reduction of microglial activation in the substantia nigra. Altogether, these data provide evidence that antagonism of P2X7 or P2Y6 receptors results in neuroregenerative or neuroprotective effects, respectively, possibly through modulation of neuroinflammatory responses.
Parkinson's disease (PD) is a neurodegenerative disorder, characterized by the loss of dopaminergic neurons in the substantia nigra and their projections to the striatum. Several processes have been described as potential inducers of the dopaminergic neuron death, such as inflammation, oxidative stress, and mitochondrial dysfunction. However, the death of dopaminergic neurons seems to be multifactorial, and its cause remains unclear. ATP-activating purinergic receptors influence various physiological functions in the CNS, including neurotransmission. Purinergic signaling is also involved in pathological scenarios, where ATP is extensively released and promotes sustained purinergic P2X7 receptor (P2X7R) activation and consequent induction of cell death. This effect occurs, among other factors, by oxidative stress and during the inflammatory response. On the other hand, peroxisome proliferator-activated receptor-g coactivator 1a (PGC-1a) is involved in energy metabolism and mitochondrial biogenesis. Expression and activity upregulation of this protein has been related with reduction of oxidative stress and neuroprotection. Therefore, P2X7R and PGC-1a are potential targets in the treatment of PD. Here hemiparkinsonism was induced by unilateral stereotactic injection of 6-OHDA in a rat model. After 7 days, the establishment of PD was confirmed and followed by treatment with the P2X7R antagonist Brilliant Blue G (BBG) or PGC-1a agonist fenofibrate. BBG, but not fenofibrate, reverted hemiparkinsonian behavior accompanied by an increase in tyrosine hydroxylase immunoreactivity in the substantia nigra. Our results suggest that the P2X7R may be a therapeutic target in Parkinson's disease.
Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.