Three simple methods for the synthesis of geminal triazides are described: Starting from 1) 3-oxocarboxylic acids, 2) iodomethyl ketones, or 3) terminal olefins, a range of triazidomethyl ketones can be constructed under mild oxidative reaction conditions by the use of IBX-SO3 K, a sulfonylated derivative of 2-iodoxybenzoic acid (IBX), and NaN3 as an azide source. This is the first report of representatives of this novel class of triazide compounds: Despite their high nitrogen content, the geminal triazides are easy to handle, even when preparative-scale syntheses are performed. (Caution: These procedures still require protective measures!) The triazides are now broadly available for further studies regarding their properties and reactivity. Furthermore, we show how the method can be used to provide α-azidoesters, which are potential building blocks for amino acids.
Geminal diazides constitute a rare class of compounds where only a limited number of methods are available for their synthesis. We present the reaction of 1,3-dicarbonyl compounds (as exemplified by malonates, 3-oxoesters, and 1,3-diketones) with molecular iodine and sodium azide in aqueous DMSO providing a general access to geminal diazides. A broad range of geminal diazides with various structural motifs including sterically demanding substituents and ordinary functional groups were synthesized, and it was shown that the diazidation of 1,3-dicarbonyls can be selectively achieved even in the presence of other 1,3-dicarbonyls with substituents at 2-position. Additionally, several diazides were studied regarding their thermal stability.
The thermolysis of geminal diazides derived from acylacetate compounds is an efficient tool for the rapid construction of the 1,3,4‐oxadiazole core. While a broad range of ethyl esters undergoes smooth transformation to the desired heterocycles that contain the ester moiety in moderate to high yields, the analogous tert‐butyl esters give rise to the oxadiazoles with acyl groups, presumably through a pathway of decarboxylation followed by a new acyl transfer.
A range of geminal bis- and tristriazoles are presented. These rare and hardly studied compound classes were easily synthesized using ethyl 2,2-diazido-3-oxobutanoate as the common starting point. Firstly, CuAAC-reaction with an alkyne afforded the corresponding deacetylated bistriazoles. Upon further azidation yielding azidomethylenebistriazoles, a second CuAAC-functionalization then led to the creation of the geminal tristriazole compounds.
An operationally simple protocol for the rapid and efficient construction of highly substituted 3-hydroxypyridines is presented. The thermally induced cyclization of easily constructed geminal diazides derived from β-ketoesters having an additional olefin moiety affords the title compounds in yields up to 97% under reagent-free conditions. The new method allows for the synthesis of preparative quantities of material. Additionally, the synthetic utility of the pyridine products for the synthesis of valuable heterocycles is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.