During the United Nations fact-finding mission to investigate the alleged use of chemical warfare agents in the Syrian Arab Republic in 2013, numerous tissues from a deceased female victim, who had displayed symptoms of cholinergic crisis, were collected. The Organisation for the Prohibition of Chemical Weapons (OPCW) authorized two specialized laboratories in the Netherlands and Germany for forensic analysis of these samples. Diverse modern mass spectrometry (MS)-based procedures in combination with either liquid chromatography (LC) or gas chromatography (GC) separation were applied. A variety of biotransformation products of the nerve agent sarin was detected, including the hydrolysis product O-isopropyl methylphosphonic acid (IMPA) as well as covalent protein adducts with e.g., albumin and human butyrylcholinesterase (hBChE). IMPA was extracted after sample acidification by solid-phase extraction and directly analyzed by LC–tandem-MS with negative electrospray ionization (ESI). Protein adducts were found, either by fluoride-induced reactivation applying GC–MS techniques or by LC–MS-based detection after positive ESI for proteolyzed proteins yielding phosphonylated tyrosine residues or a specific phosphonylated hBChE-derived nonapeptide. These experimental results provided unambiguous evidence for a systemic intoxication and were the first proving the use of sarin in the ongoing bellicose conflict. This scenario underlines the requirement for qualified and specialized analytical laboratories to face repeated violation of the Chemical Weapons Convention.
In order to provide a quantitative basis for pretreatment and therapy of intoxications with sulfur mustard (SM) the toxicokinetics of this agent as well as its major DNA-adduct were studied in male hairless guinea pigs for the intravenous, respiratory and percutaneous routes. The study comprised measurement of the concentration-time course of SM in blood and measurement of the concentrations of intact SM and its adduct to guanine in various tissues at several time points after administration of, or exposure to SM. SM was analyzed in blood and tissues by gas chromatography with automated thermodesorption injection and mass-spectrometric detection. DNA-adducts were measured via an immuno-slot-blot method. In contrast with nerve agents of the phosphofluoridate type, SM partitions strongly to various organs, especially the lung, spleen, liver and bone marrow. The respiratory toxicity of SM appears to be local, rather than systemic. Surprisingly, the maximum concentration of SM in blood upon percutaneous exposure to 1 LCt50 (10,000 mg.min.m-3, estimated) is approximately 6-fold higher than that for nose--only exposure to 3 LCt50 (2,400 mg.min.m-3). Pretreatment of hairless guinea pigs with the potential scavengers N-acetyl cysteine or cysteine isopropyl ester did not significantly increase the LCt50-value for nose--only exposure to SM vapor.
Over the last decade TNO has developed a deformable mirror concept using electromagnetic actuators with the main advantages of having very low non-linearity and hysteresis, low power consumption, and high inherent reliability of the actuators. TNO recently started a program to redesign the electromagnetic actuator to improve the actuator efficiency, allowing higher actuator force per volume and per wattage. The increased actuator efficiency gives improvement of the DM performance in terms of dynamical performance, actuation range, and power dissipation. With this technology various applications in the fields of ground-based astronomy and space missions are targeted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.