This study uses panel data analysis and regression analysis to examine the relationship between income inequality, economic growth, inflation, and unemployment in West Java Province. The results of the panel data analysis indicate that income inequality, inflation, and unemployment significantly negatively affect economic growth. The regression analysis shows that income inequality significantly affects unemployment, while economic growth and inflation have a significant positive effect on unemployment. The study suggests that income inequality, inflation, and unemployment are important factors that affect economic growth and unemployment rates in West Java Province.
This study implements stock index price predictions using the LSTM method, where one of the processes in data management before running with the LSTM method is data split. This study also looks for the most appropriate split data ratio in predicting stock index prices to minimize error rates and differences in forecasted prices and original prices because in previous studies there were several rules of thumb in dividing data, so it is necessary to compare the most appropriate ratios in this research. Based on the evaluation process, the error value was found from nine split data ratios that were run by five ratios which produced a predictive graph line shape that resembled the validation line. Three datasets, namely split data ratios of 80:20, 70:30, and 60:40, are the ratios that get the lowest error values based on the RMSE, MSE, MAPE, and MAE values in the five stock index datasets. The three ratios are then compared again by looking at the average percentage difference between the validation price and the predicted price for the next working day, and it is found that the ratio of 80:20 is the most suitable split data ratio for predicting the stock index price for the next working day, with a level of difference in the average value between the original price and the predicted price on the stock index of 1.3%. While the ratio of 70:30 has an average predicted value of five stock index datasets of 1.9% and a ratio of 60:40 of 1.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.