The present paper is dedicated to the application of the pivoted Cholesky decomposition to compute low-rank approximations of dense, positive semi-definite matrices. The resulting approximation error is rigorously controlled in terms of the trace norm. Exponential convergence rates are proved under the assumption that the eigenvalues of the matrix under consideration exhibit a sufficiently fast exponential decay. By numerical experiments it is demonstrated that the pivoted Cholesky decomposition leads to very efficient algorithms to separate the variables of bi-variate functions.
Inspired by Pople diagrams popular in quantum chemistry, we introduce a hierarchical scheme, based on the multi-level combination (C) technique, to combine various levels of approximations made when calculating molecular energies within quantum chemistry. When combined with quantum machine learning (QML) models, the resulting CQML model is a generalized unified recursive kernel ridge regression which exploits correlations implicitly encoded in training data comprised of multiple levels in multiple dimensions. Here, we have investigated up to three dimensions: Chemical space, basis set, and electron correlation treatment. Numerical results have been obtained for atomization energies of a set of ∼7'000 organic molecules with up to 7 atoms (not counting hydrogens) containing CHONFClS, as well as for ∼6'000 constitutional isomers of C 7 H 10 O 2 . CQML learning curves for atomization energies suggest a dramatic reduction in necessary training samples calculated with the most accurate and costly method. In order to generate milli-second estimates of CCSD(T)/cc-pvdz atomization energies with prediction errors reaching chemical accuracy (∼1 kcal/mol), the CQML model requires only ∼100 training instances at CCSD(T)/cc-pvdz level, rather than thousands within conventional QML, while more training molecules are required at lower levels. Our results suggest a possibly favorable trade-off between various hierarchical approximations whose computational cost scales differently with electron number.
In this paper matrix compression techniques in the context of wavelet Galerkin schemes for boundary integral equations are developed and analyzed that exhibit optimal complexity in the following sense. The fully discrete scheme produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that is proven to stay proportional to the number of unknowns. Key issues are the second compression, that reduces the near field complexity significantly, and an additional aposteriori compression. The latter one is based on a general result concerning an optimal work balance, that applies, in particular, to the quadrature used to compute the compressed stiffness matrix with sufficient accuracy in linear time. The theoretical results are illustrated by a 3D example on a nontrivial domain.
In this article, we provide a rigorous analysis of the solution to elliptic diffusion problems on random domains. In particular, based on the decay of the Karhunen-Loève expansion of the domain perturbation field, we establish decay rates for the derivatives of the random solution that are independent of the stochastic dimension. For the implementation of a related approximation scheme, like quasi-Monte Carlo quadrature, stochastic collocation, etc., we propose parametric finite elements to compute the solution of the diffusion problem on each individual realization of the domain generated by the perturbation field. This simplifies the implementation and yields a non-intrusive approach. Having this machinery at hand, we can easily transfer it to stochastic interface problems. The theoretical findings are complemented by numerical examples for both, stochastic interface problems and boundary value problems on random domains.
Abstract. We consider the numerical solution of elliptic boundary value problems in domains with random boundary perturbations. Assuming normal perturbations with small amplitude and known mean field and two-point correlation function, we derive, using a second order shape calculus, deterministic equations for the mean field and the two-point correlation function of the random solution for a model Dirichlet problem which are 3rd order accurate in the boundary perturbation size.Using a variational boundary integral equation formulation on the unperturbed, nominal boundary and a wavelet discretization, we present and analyze an algorithm to approximate the random solution's two-point correlation function at essentially optimal order in essentially O(N ) work and memory, where N denotes the number of unknowns required for consistent discretization of the boundary of the domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.