The release of transmitters at sympathoeffector junctions is not constant, but subject to modulation by a plethora of different mechanisms. In this respect, presynaptic receptors located on the sympathetic axon terminals are of utmost importance, because they are activated by exogenous agonists and by endogenous neurotransmitters. In the latter case, the transmitters that activate the presynaptic receptors of a nerve terminal may be released either from the very same nerve ending or from a different axon terminal, and the receptors involved are auto- and heteroreceptors, respectively. In terms of their structural and functional features, receptors of sympathetic axon terminals can be categorized as either ionotropic (transmitter-gated ion channels) or metabotropic (most commonly G protein-coupled) receptors. This review summarizes results on more than 30 different metabotropic and four different ionotropic receptors that have been found to control the amount of transmitter being released from sympathetic neurons. Each of these receptors may not only stimulate, facilitate, and reduce sympathetic transmitter release, respectively, but also interact with the functions of other receptors present on the same axonal varicosity. This provides a multitude of mechanisms that regulate the amount of sympathetic transmitter output. Accordingly, a sophisticated cross-talk within and between extra- and intracellular signals is integrated at axon terminals to adapt the strength of sympathoeffector transmission to a given situation. This will not only determine the function of the sympathetic nervous system in health and disease, but also therapeutic and untoward effects of drugs that bind to the presynaptic receptors in sympathetically innervated tissues.
This review provides an overview on different antibody test methods that can be applied in cases of suspected paraneoplastic neurological syndromes (PNS) and anti-neuronal autoimmune encephalitis (AIE) in order to explain their diagnostic value, describe potential pitfalls and limitations, and discuss novel approaches aimed at discovering further autoantibodies. Onconeuronal antibodies are well-established biomarkers for PNS and may serve as specific tumor markers. The recommended procedure to detect onconeuronal antibodies is a combination of indirect immunohistochemistry on fixed rodent cerebellum and confirmation of the specificity by line assays. Simplification of this approach by only using line assays with recombinant proteins bears the risk to miss antibody-positive samples. Anti-neuronal surface antibodies are sensitive and specific biomarkers for AIE. Their identification requires the use of test methods that allow the recognition of conformation dependent epitopes. These commonly include cell-based assays and tissue based assays with unfixed rodent brain tissue. Tissue based assays can detect most of the currently known neuronal surface antibodies and thus enable broad screening of biological samples. A complementary testing on live neuronal cell cultures may confirm that the antibody recognizes a surface epitope. In patients with peripheral neuropathy, the screening may be expanded to teased nerve fibers to identify antibodies against the node of Ranvier. This method helps to identify a novel subgroup of peripheral autoimmune neuropathies, resulting in improved immunotherapy of these patients. Tissue based assays are useful to discover additional autoantibody targets that play a role in diverse autoimmune neurological syndromes. Antibody screening assays represent promising avenues of research to improve the diagnostic yield of current assays for antibody-associated autoimmune encephalitis.
Duchenne muscular dystrophy (DMD), induced by mutations in the gene encoding for the cytoskeletal protein dystrophin, is an inherited disease characterized by progressive muscle weakness. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with cardiac complications. These include cardiomyopathy development and cardiac arrhythmias. The current understanding of the pathomechanisms in the heart is very limited, but recent research indicates that dysfunctional ion channels in dystrophic cardiomyocytes play a role. The aim of the present study was to characterize abnormalities in L-type calcium channel function in adult dystrophic ventricular cardiomyocytes. By using the whole cell patch-clamp technique, the properties of currents through calcium channels in ventricular cardiomyocytes isolated from the hearts of normal and dystrophic adult mice were compared. Besides the commonly used dystrophin-deficient mdx mouse model for human DMD, we also used mdx-utr mice, which are both dystrophin- and utrophin-deficient. We found that calcium channel currents were significantly increased, and channel inactivation was reduced in dystrophic cardiomyocytes. Both effects enhance the calcium influx during an action potential (AP). Whereas the AP in dystrophic mouse cardiomyocytes was nearly normal, implementation of the enhanced dystrophic calcium conductance in a computer model of a human ventricular cardiomyocyte considerably prolonged the AP. Finally, the described dystrophic calcium channel abnormalities entailed alterations in the electrocardiograms of dystrophic mice. We conclude that gain of function in cardiac L-type calcium channels may disturb the electrophysiology of the dystrophic heart and thereby cause arrhythmias.
BACKGROUND AND PURPOSEFlupirtine is a non-opioid analgesic that has been in clinical use for more than 20 years. It is characterized as a selective neuronal potassium channel opener (SNEPCO). Nevertheless, its mechanisms of action remain controversial and are the purpose of this study. EXPERIMENTAL APPROACHEffects of flupirtine on native and recombinant voltage-and ligand-gated ion channels were explored in patch-clamp experiments using the following experimental systems: recombinant KIR3 and KV7 channels and a3b4 nicotinic acetylcholine receptors expressed in tsA 201 cells; native voltage-gated Na, and TRPV1 channels, as well as GABAA, glycine, and ionotropic glutamate receptors expressed in rat dorsal root ganglion, dorsal horn and hippocampal neurons. KEY RESULTSTherapeutic flupirtine concentrations (Յ10 mM) did not affect voltage-gated Na + or Ca 2+ channels, inward rectifier K + channels, nicotinic acetylcholine receptors, glycine or ionotropic glutamate receptors. Flupirtine shifted the gating of KV7 K + channels to more negative potentials and the gating of GABAA receptors to lower GABA concentrations. These latter effects were more pronounced in dorsal root ganglion and dorsal horn neurons than in hippocampal neurons. In dorsal root ganglion and dorsal horn neurons, the facilitatory effect of therapeutic flupirtine concentrations on KV7 channels and GABAA receptors was comparable, whereas in hippocampal neurons the effects on KV7 channels were more pronounced. CONCLUSIONS AND IMPLICATIONSThese results indicate that flupirtine exerts its analgesic action by acting on both GABAA receptors and KV7 channels. AbbreviationsBMI, bicuculline methiodide; CNQX, cyano-2,3-dihydroxy-7-nitroquinoxaline; DRG, dorsal root ganglion; NBQX, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide; SCG, superior cervical ganglion; SNEPCO, selective neuronal potassium channel opener
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.