Radical innovations for all aircraft systems and subsystems are needed for realizing future carbon-neutral aircraft, with hybrid-electric aircraft due to be delivered after 2035, initially in the regional aircraft segment of the industry. Electrical energy storage is one key element here, demanding safe, energy-dense, lightweight technologies. Combining load-bearing with energy storage capabilities to create multifunctional structural batteries is a promising way to minimize the detrimental impact of battery weight on the aircraft. However, despite the various concepts developed in recent years, their viability has been demonstrated mostly at the material or coupon level, leaving many open questions concerning their applicability to structural elements of a relevant size for implementation into the airframe. This review aims at providing an overview of recent approaches for structural batteries, assessing their multifunctional performance, and identifying gaps in technology development toward their introduction for commercial aeronautic applications. The main areas where substantial progress needs to be achieved are materials, for better energy storage capabilities; structural integration and aircraft design, for optimizing the mechanical-electrical performance and lifetime; aeronautically compatible manufacturing techniques; and the testing and monitoring of multifunctional structures. Finally, structural batteries will introduce novel aspects to the certification framework.
The present work focuses on the fast prediction of the interaction noise (IN) components of a Contra Rotating Open Rotor (CROR) engine at take-off. The flow field past the CROR is computed using a steady RANS approach coupled with the concept of mixing plane between the rotors to remove the flow unsteadiness due to the propeller interaction. The effects of such interaction are then recovered applying the analytical model of Jaron et al. (2014), balanced with data extracted from the RANS solution, to extrapolate the information about the wake of the front rotor and the potential flow fields through the mixing plane. This RANS-informed approximation allows recovering the unsteadiness of the flow-blades interaction in terms of unsteady blade response. The tonal noise at the blade passing frequency and the interaction noise are then estimated using the analytical frequency domain model proposed by Hanson (1985). The present method for the fast prediction of CROR noise has been validated by comparison with the results of URANS simulations and noise measurements. CROR geometry UDF F7/A7 with both 8 × 8 and 11 × 9 blade counts has been considered. The flow velocity profiles extrapolated through the mixing plane agree well with the URANS results, except in the vicinity of the blade tip, where the analytical extrapolation method is not able to deal properly with the strongly 3D tip vortex flow. The comparison of the predicted interaction noise with acoustic measurements shows that the present fast RANS-informed approach is capable of estimating the directivity of the CROR noise with reasonable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.