IL-22 is produced by activated T cells and signals through a receptor complex consisting of IL-22R1 and IL-10R2. The aim of this study was to analyze IL-22 receptor expression, signal transduction, and specific biological functions of this cytokine system in intestinal epithelial cells (IEC). Expression studies were performed by RT-PCR. Signal transduction was analyzed by Western blot experiments, cell proliferation by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay and Fas-induced apoptosis by flow cytometry. IEC migration was studied in wounding assays. The IEC lines Caco-2, DLD-1, SW480, HCT116, and HT-29 express both IL-22 receptor subunits IL-22R1 and IL-10R2. Stimulation with TNF-alpha, IL-1beta, and LPS significantly upregulated IL-22R1 without affecting IL-10R2 mRNA expression. IL-22 binding to its receptor complex activates STAT1/3, Akt, ERK1/2, and SAPK/JNK MAP kinases. IL-22 significantly increased cell proliferation (P = 0.002) and phosphatidylinsitol 3-kinase-dependent IEC cell migration (P < 0.00001) as well as mRNA expression of TNF-alpha, IL-8, and human beta-defensin-2. IL-22 had no effect on Fas-induced apoptosis. IL-22 mRNA expression was increased in inflamed colonic lesions of patients with Crohn's disease and correlated highly with the IL-8 expression in these lesions (r = 0.840). Moreover, IL-22 expression was increased in murine dextran sulfate sodium-induced colitis. IEC express functional receptors for IL-22, which increases the expression of proinflammatory cytokines and promotes the innate immune response by increased defensin expression. Moreover, our data indicate intestinal barrier functions for this cytokine-promoting IEC migration, which suggests an important function in intestinal inflammation and wound healing. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and IEC migration.
Hepatitis C virus (HCV) sets up persistent infection in the majority of those exposed. It is likely that, as with other persistent viral infections, the efficacy of T-lymphocyte responses influences long-term outcome. However, little is known about the functional capacity of HCV-specific T-lymphocyte responses induced after acute infection. We investigated this by using major histocompatibility complex class I-peptide tetrameric complexes (tetramers), which allow direct detection of specific CD8؉ T lymphocytes ex vivo, independently of function. Here we show that, early after infection, virus-specific CD8؉ T lymphocytes detected with a panel of four such tetramers are abnormal in terms of their synthesis of antiviral cytokines and lytic activity. Furthermore, this phenotype is commonly maintained long term, since large sustained populations of HCV-specific CD8 ؉ T lymphocytes were identified, which consistently had very poor antiviral cytokine responses as measured in vitro. Overall, HCV-specific CD8 ؉ T lymphocytes show reduced synthesis of tumor necrosis factor alpha (TNF-␣) and gamma interferon (IFN-␥) after stimulation with either mitogens or peptides, compared to responses to Epstein-Barr virus and/or cytomegalovirus. This behavior of antiviral CD8 ؉ T lymphocytes induced after HCV infection may contribute to viral persistence through failure to effectively suppress viral replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.