The amiloride-sensitive epithelial sodium channel (ENaC) plays a prominent role in sodium uptake from alveolar fluid, and is the major component in alveolar fluid clearance in normal and diseased lungs. The lectin-like domain of TNF-α has been shown to activate amiloride-sensitive sodium uptake in type II alveolar epithelial cells. Therefore, several synthetic peptides that mimic the lectin-like domain of TNF-α (TIP) were synthesised and their ability to enhance sodium current through ENaC was studied in A549 cells with the patch clamp technique. Our data suggest that a free positively-charged N-terminal amino group on residue 1 and/or a free negatively-charged carboxyl group on residue 17 of the TIP peptide is essential for the ENaC-activating effect. Ventilation strategies apart, no standard treatment exists for pulmonary permeability oedema. Therefore, novel therapies activating sodium uptake from the alveolar fluid via ENaC could improve clinical outcome.
AP301 [Cyclo(CGQRETPEGAEAKPWYC)], a cyclic peptide comprising the human tumor necrosis factor lectin-like domain (TIP domain) sequence, is currently being developed as a treatment for lung edema and has been shown to reduce extravascular lung water and improve lung function in mouse, rat, and pig models. The current paradigm for liquid homeostasis in the adult mammalian lung is that passive apical uptake of sodium via the amiloride-sensitive epithelial Na 1 channel (ENaC) and nonselective cyclic-nucleotide-gated cation channels creates the major driving force for reabsorption of water through the alveolar epithelium in addition to other ion channels such as potassium and chloride channels. AP301 can increase amiloride-sensitive current in A549 cells as well as in freshly isolated type II alveolar epithelial cells from different species. ENaC is expressed endogenously in all of these cell types. Consequently, this study was undertaken to determine whether ENaC is the specific target of AP301. The effect of AP301 in A549 cells as well as in human embryonic kidney cells and Chinese hamster ovary cells heterologously expressing human ENaC subunits (a, b, g, and d) was measured in patch clamp experiments. The congener TIP peptide AP318 [Cyclo(4-aminobutanoic acid-GQRETPEGAEAKPWYD)] activated ENaC by increasing single-channel open probability. AP301 increased current in proteolytically activated (cleaved) but not near-silent (uncleaved) ENaC in a reversible manner. abg-or dbg-ENaC coexpression was required for maximal activity. No increase in current was observed after deglycosylation of extracellular domains of ENaC. Thus, our data suggest that the specific interaction of AP301 with both endogenously and heterologously expressed ENaC requires precedent binding to glycosylated extracellular loop(s).
Pulmonary permeability oedema is a frequent complication in a number of life-threatening lung conditions, such as ALI and ARDS. Apart from ventilation strategies, no specific therapy yet exists for treatment of these potentially fatal illnesses. The oedema-reducing capacity of the lectin-like domain of TNF (TIP) and of synthetic peptides, mTIP and hTIP, which mimic the TIP domain of mouse and human TNF, have been demonstrated in various studies in rodents. Cell-based electrophysiological studies have revealed that the alveolar fluid clearing capacity of TNF and the TIP peptides is due to activation of the amiloride-sensitive Na+ current in alveolar epithelial cells and that the primary site of action is on the apical side of these cells. AP301, a synthetic cyclic peptide mimicking the TIP domain of human TNF is currently undergoing clinical trials as a therapy for pulmonary permeability oedema. AP301 has been shown to improve alveolar liquid clearance and lung function in a porcine model of ALI. For non-clinical regulatory assessment, dog, pig and rat are standard animal models; accordingly, pre-clinical toxicological and pharmacological safety studies have been conducted with AP301 in dogs and rats. Hitherto, no studies have assessed the pharmacodynamic effect of AP301 on primary canine or porcine type II AEC. The current study describes the effect of AP301 on the amiloride-sensitive Na+ current in type II AEC isolated from dog, pig and rat lungs. In whole cell patch clamp experiments with dog type II AEC, an increase in the amiloride-sensitive Na+ current from 3.7 pA to 49.4 pA was observed in the presence of AP301; in pig type II AEC, an increase from 10.0 pA to 159.6 pA was observed, and in rat AEC, from 6.9 pA to 62.4 pA. In whole cell patch clamp experiments in A549 cells, AP301-induced enhancement of the amiloride-sensitive current was eliminated when Na+ in the bath solution was replaced with N-methyl-D-glucamine (NMDG), and when the cells were pre-incubated with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an inhibitor of ENaC, but enhancement was unaffected by addition of cyclic nucleotide-gated (CNG) channel inhibitors Zn2+ or L-cis-diltiazem prior to AP301. These results provide strong evidence that AP301 activates the amiloride-sensitive Na+ current through ENaC in type II AEC from dog, pig and rat. To our knowledge, this is the first cell-based analysis of the oedema-clearing effect of AP301 observed in the porcine model of pulmonary oedema. Furthermore, the results validate the dog and pig models in non-clinical assessment of AP301.
AP301 is an activator of ENaC-mediated Na+ uptake for the treatment of pulmonary permeability edema in acute respiratory distress syndrome (ARDS). The purpose of this “first-in-man” study was to examine local and systemic safety and systemic exposure of ascending single doses of AP301, when inhaled by healthy male subjects. In a double-blind, placebo-controlled study, 48 healthy male subjects were randomized to 6 ascending dose groups (single doses up to 120 mg) of 8 subjects each (3:1 randomization of AP301: placebo). Serial assessments included spirometry, exhaled nitric oxide (eNO), vital signs, ECG, safety laboratory, adverse events (AE), and blood samples for the quantification of AP301 in plasma. Descriptive statistics was applied. All 48 subjects received treatment, and completed the study as per protocol. No serious, local (e.g., hoarseness, cough, bronchospasm), or dose-limiting AEs were noted. None of the assessments indicated notable dose or time-related alterations of safety outcomes. Observed AP301 systemic exposure levels were very low, with mean Cmax values of <2.5 ng/mL in the highest dose groups. Inhaled AP301 single doses up to 120 mg were safe and well tolerated by healthy male subjects. Distribution of inhaled AP301 was largely confined to the lung, as indicated by very low AP301 systemic exposure levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.