Horizontal transfer of genes of selective value in an environment 6 years after their introduction into a watershed has been observed. Expression of the gene pheA, which encodes phenol monooxygenase and is linked to the pheBA operon (A. Nurk, L. Kasak, and M. Kivisaar, Gene 102:13-18, 1991), allows pseudomonads to use phenol as a growth substrate. Pseudomonas putida strains carrying this operon on a plasmid were used for bioremediation after an accidental fire in the Estonia oil shale mine in Estonia in 1988. The water samples used for studying the fate of the genes introduced were collected in 1994. The same gene cluster was also detected in Pseudomonas strains isolated from water samples of a nearby watershed which has been continuously polluted with phenols due to oil shale industry leachate. Together with the more frequently existing counterparts of the dmp genes (V. Shingler, J. Powlowski, and U. Marklund, J. Bacteriol. 174:711-724, 1992), the pheA gene was also represented in the phenol-degrading strains. The area where the strains containing the pheA gene were found was restricted to the regular route of phenolic leachate to the Baltic Sea. Nine Pseudomonas strains belonging to four different species (P. corrugata, P. fragi, P. stutzeri, and P. fluorescens biotypes B, C, and F) and harboring horizontally transferred pheBA operons were investigated. The phe genes were clustered in the same manner in these nine phe operons and were connected to the same promoter as in the case of the original pheBA operon. One 10.6-kb plasmid carrying a pheBA gene cluster was sequenced, and the structure of the rearranged pheBA operon was described. This data indicates that introduced genetic material could, if it encodes a beneficial capability, enrich the natural genetic variety for biodegradation.
The microbial communities and their degradative potential in rhizospheres of alfalfa (Medicago sativa) and reed (Phragmites australis) and in unplanted soil in response to bitumen contamination of soil were studied in pot experiments. According to the results of fluorescence microscopy, over a period of 27 months, bitumen contamination of soil reduced the total number of microorganisms more significantly (by 75%) in unplanted than in rhizosphere soil (by 42% and 7% for reed and alfalfa, respectively) and had various effects on some important physiological groups of microorganisms such as actinomycetes as well as nitrogen-fixing, nitrifying, denitrifying, ammonifying, phosphate-solubilizing, sulphur-oxidizing, cellulolytic and hydrocarbon-degrading microorganisms. The changes in the physiological structure of the microbial community under bitumen contamination were found to hinge on not merely the presence of plants but also their type. It was noted that the rhizosphere microflora of alfalfa was less inhibited by hydrocarbon pollution and had a higher degradative potential than the rhizosphere microflora of reed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.