In this work, the encapsulation of magnetic nickel nanoparticles in polyacrylamide particles was performed via inverse miniemulsion polymerization. The dispersion of nickel nanoparticles was characterized in polar solvents including water, ethanol, and dimethyl sulfoxide using different stabilizers. The best results were obtained when the nonionic stabilizer poly(ethylene glycol) octadecyl ether (Brij 76) was used to stabilize the nickel nanoparticles in dimethyl sulfoxide. In addition, the block copolymer poly(ethylene‐co‐butylene)‐b‐poly(ethylene oxide) was used as a surfactant to create inverse miniemulsions while minimizing the coalescence of the miniemulsion droplets. Different types of salts such as zinc, nickel, and sodium nitrates were tested as lipophobes to retard Ostwald ripening. Transmission electron microscopy images of polyacrylamide/nickel particles synthesized with zinc and nickel salts as lipophobes indicate that nickel nanoparticles are embedded in the polyacrylamide matrix. Magnetization curves show that the saturation magnetization of polyacrylamide/nickel particles is only slightly below that of the pure nickel nanoparticles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.