Uncovering the interaction between genomes and the environment is a principal challenge of modern genomics and preventive medicine. While theoretical models are well defined, little is known of the G × E interactions in humans. We used an integrative approach to comprehensively assess the interactions between 1.6 million data points, encompassing a range of environmental exposures, health, and gene expression levels, coupled with whole-genome genetic variation. From ∼1000 individuals of a founder population in Quebec, we reveal a substantial impact of the environment on the transcriptome and clinical endophenotypes, overpowering that of genetic ancestry. Air pollution impacts gene expression and pathways affecting cardio-metabolic and respiratory traits, when controlling for genetic ancestry. Finally, we capture four expression quantitative trait loci that interact with the environment (air pollution). Our findings demonstrate how the local environment directly affects disease risk phenotypes and that genetic variation, including less common variants, can modulate individual’s response to environmental challenges.
In genetics the ability to accurately describe the familial relationships among a group of individuals can be very useful. Recent statistical tools succeeded in assessing the degree of relatedness up to 6–7 generations with good power using dense genome-wide single-nucleotide polymorphism data to estimate the extent of identity-by-descent (IBD) sharing. It is therefore important to describe genome-wide patterns of IBD sharing for more remote and complex relatedness between individuals, such as that observed in a founder population like Quebec, Canada. Taking advantage of the extended genealogical records of the French Canadian founder population, we first compared different tools to identify regions of IBD in order to best describe genome-wide IBD sharing and its correlation with genealogical characteristics. Results showed that the extent of IBD sharing identified with FastIBD correlates best with relatedness measured using genealogical data. Total length of IBD sharing explained 85% of the genealogical kinship's variance. In addition, we observed significantly higher sharing in pairs of individuals with at least one inbred ancestor compared with those without any. Furthermore, patterns of IBD sharing and average sharing were different across regional populations, consistent with the settlement history of Quebec. Our results suggest that, as expected, the complex relatedness present in founder populations is reflected in patterns of IBD sharing. Using these patterns, it is thus possible to gain insight on the types of distant relationships in a sample from a founder population like Quebec.
BackgroundFounder populations have an important role in the study of genetic diseases. Access to detailed genealogical records is often one of their advantages. These genealogical data provide unique information for researchers in evolutionary and population genetics, demography and genetic epidemiology. However, analyzing large genealogical datasets requires specialized methods and software. The GENLIB software was developed to study the large genealogies of the French Canadian population of Quebec, Canada. These genealogies are accessible through the BALSAC database, which contains over 3 million records covering the whole province of Quebec over four centuries. Using this resource, extended pedigrees of up to 17 generations can be constructed from a sample of present-day individuals.ResultsWe have extended and implemented GENLIB as a package in the R environment for statistical computing and graphics, thus allowing optimal flexibility for users. The GENLIB package includes basic functions to manage genealogical data allowing, for example, extraction of a part of a genealogy or selection of specific individuals. There are also many functions providing information to describe the size and complexity of genealogies as well as functions to compute standard measures such as kinship, inbreeding and genetic contribution. GENLIB also includes functions for gene-dropping simulations.The goal of this paper is to present the full functionalities of GENLIB. We used a sample of 140 individuals from the province of Quebec (Canada) to demonstrate GENLIB’s functions. Ascending genealogies for these individuals were reconstructed using BALSAC, yielding a large pedigree of 41,523 individuals. Using GENLIB’s functions, we provide a detailed description of these genealogical data in terms of completeness, genetic contribution of founders, relatedness, inbreeding and the overall complexity of the genealogical tree. We also present gene-dropping simulations based on the whole genealogy to investigate identical-by-descent sharing of alleles and chromosomal segments of different lengths and estimate probabilities of identical-by-descent sharing.ConclusionsThe R package GENLIB provides a user friendly and flexible environment to analyze extensive genealogical data, allowing an efficient and easy integration of different types of data, analytical methods and additional developments and making this tool ideal for genealogical analysis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-015-0581-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.