A challenge in establishing agroforestry systems is ensuring that farmers are interested in the tree species, and are aware of how to adequately manage these species. This challenge was tackled in the Atlantic Rainforest biome (Brazil), where a participatory trial with agroforestry coffee systems was carried out, followed by a participatory systematisation of the farmers experiences. Our objective was to identify the main tree species used by farmers as well as their criteria for selecting or rejecting tree species. Furthermore, we aimed to present a specific inventory of trees of the Leguminosae family. In order to collect the data, we reviewed the bibliography of the participatory trial, visited and interviewed the farmers and organised workshops with them. The main farmers' criteria for selecting tree species were compatibility with coffee, amount of biomass, production and the labour needed for tree management. The farmers listed 85 tree species; we recorded 28 tree species of the Leguminosae family. Most trees were either native to the biome or exotic fruit trees. In order to design and manage complex agroforestry systems, family farmers need sufficient knowledge and autonomy, which can be reinforced when a participatory methodology is used for developing on-farm agroforestry systems. In the case presented, the farmers learned how to manage, reclaim and conserve their land. The diversification of production, especially with fruit, contributes to food security and to a low cost/benefit ratio of agroforestry systems. The investigated agroforestry systems showed potential to restore the degraded landscape of the Atlantic Rainforest biome.
In the Zona da Mata of Minas Gerais State, Brazil, family farmers are adjusting to agroecological principles to reconcile sustainable agriculture, livelihood improvements and biodiversity conservation. Starting in 1993, experimentation with coffee agroforestry was gradually initiated on an increasing number of farms (37 in total), resulting in the simultaneous management of sun coffee (SC) and agroforestry coffee (AF) plots. We aimed (1) to identify factors that determine the farmers' selection of trees used in AF;(2) to describe the agroecological farms in transition; and (3) to perform an economic comparison between AF and SC. These objectives were addressed by combining data from botanical surveys in 1993/1994 and 2007, by interviews with farmers and by detailed data on the production value and costs of labour and material inputs. The results showed considerable diversity in farming strategies and management among the farmers. Early adopters of AF had diversified towards production of different marketable products. The use of native trees in AF for this purpose, and for restoration of soil fertility (e.g., leguminous trees), had increased since the start of the experiments, while exotic tree species were eliminated. Over a period of 12 years AF was more profitable than SC due to the production of a diversity of agricultural goods, despite somewhat higher establishment costs. Other ecosystem services delivered by AF, such as biodiversity and cultural services are currently not valorized. Payment schemes for environmental services could further improve the economic benefits of AF for family farmers and alleviate establishment and learning costs.
Participatory research methods have helped scientists to understand how farmers experiment and to seek partnerships with farmers in developing technologies with enhanced relevance and adoption. This paper reports on the development of a participatory methodology to systematize long-term experimentation with agroforestry systems carried out in a hotspot of biodiversity by non-governmental organizations and local farmers. A methodological guide for systematization and techniques used for Participatory Rural Appraisal formed the basis of our work. We propose an analytical framework that recognizes systems of reflexive and learning interactions, in order to make the learned lessons explicit. At the process level, the main lessons and recommendations are as follows. It is important to establish partnerships to conduct innovative and complex experimentation with agroforest. Participatory systematization allows us to improve the methodological aspects of design, implementation and management of on-farm participatory experimentation. It also serves to synthesize the main findings and to extract lessons from agroforestry systems experiments. It fosters the technical improvement of agroforestry systems. It creates possibilities for reflection on agroforestry systems by farmers, extensionists and researchers, as well as their learning with respect to management of such systems. The findings are placed in the context of current theory on participatory experimentation in agriculture. Extractive and interactive approaches help to produce rich insights of mutual interest through collaboration by identifying local, regional and global convergences, complementarities, and conflicts of interest; which affect the advance of new eco-friendly technologies, to both improve the livelihoods and to reverse biodiversity loss and environmental degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.