In this work, we integrated a commercially-available fully-spectroscopic pixelated cadmium telluride (CdTe) detector system as a two-dimensional (2D) array detector into our existing benchtop conebeam x-ray fluorescence computed tomography (XFCT) system. After integrating this detector, known as High-Energy X-ray Imaging Technology (HEXITEC), we performed quantitative imaging of gold nanoparticle (GNP) distribution in a small animal-sized phantom using our benchtop XFCT system. Owing to the upgraded detector component within our benchtop XFCT system, we were able to conduct this phantom imaging in an unprecedented manner by volumetric XFCT scans followed by XFCT image reconstruction in 3D. The current results showed that adoption of HEXITEC, in conjunction with a custommade parallel-hole collimator, drastically reduced the XFCT scan time/dose. Compared with the previous work performed with our original benchtop XFCT system adopting a single crystal CdTe detector, the currently observed reduction was up to a factor of 5, while achieving comparable GNP detection limit under similar experimental conditions. Overall, we demonstrated, for the first time to the best our knowledge, the feasibility of benchtop XFCT imaging of small animal-sized objects containing biologically relevant GNP concentrations (on the order of 0.1 mg Au/cm 3 or 100 parts-per-million/ppm), with the scan time (on the order of 1 minute)/x-ray dose (on the order of 10 cGy) that are likely meeting the minimum requirements for routine preclinical imaging applications.
Commercially available fully spectroscopic pixelated cadmium telluride (CdTe) detector systems have been adopted lately for benchtop x-ray fluorescence (XRF) imaging/computed tomography (XFCT) of objects containing metal nanoprobes such as gold nanoparticles (GNPs). To date, however, some important characteristics of such detector systems under typical operating conditions of benchtop XRF/XFCT imaging systems are not well known. One important but poorly studied characteristic is the effect of detector bias-voltage on photon counting efficiency, energy resolution, and the resulting material detection limit. In this work, therefore, we investigated these characteristics for a commercial pixelated detector system adopting a 1-mm-thick CdTe sensor (0.25-mm pixel-pitch), known as HEXITEC, incorporated into an experimental benchtop cone-beam XFCT system with parallel-hole detector collimation. The detector system, operated at different bias-voltages, was used to acquire the gold XRF/Compton spectra from 1.0 wt% GNP-loaded phantom irradiated with 125 kVp x-rays filtered by 1.8-mm Tin. At each bias-voltage, the gold XRF signal, and the full-width-at-half-maximum at gold Kα
2 XRF peak (∼67 keV) provided photon counting efficiency and energy resolution, respectively. Under the current experimental conditions, the detector photon counting efficiency and energy resolution improved with increasing bias-voltage by ∼41 and ∼29% at −300V; ∼54 and ∼35% at −500V, respectively, when compared to those at −100V. Consequently, the GNP detection limit improved by ∼26% at −300V and ∼30% at −500V. Furthermore, the homogeneity of per-pixel energy resolution within the collimated detector area improved by ∼34% at −300V and ∼54% at −500V. These results suggested the gradual improvements in the detector performance with increasing bias-voltage up to −500V. However, at and beyond −550V, there were no discernible improvements in photon counting efficiency and energy resolution. Thus, the bias-voltage range of −500 to −550V was found optimal under the current experimental conditions that are considered typical of benchtop XRF/XFCT imaging tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.