Satellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification of satellite images. The HFEL uses three different types of Convolutional Neural Networks (CNN), namely AlexNet, LeNet-5 and a residual network (ResNet), to extract the appropriate features from images of the hierarchical framework. Additionally, the optimal features from the feature set are extracted using the Correlation Coefficient-Based Gravitational Search Algorithm (CCGSA). Further, the Multi Support Vector Machine (MSVM) is used to classify the satellite images by extracted features from the fully connected layers of the CNN and selected features of the CCGSA. Hence, the combination of HFEL and CCGSA is used to obtain the precise classification over different datasets such as the SAT-4, SAT-6 and Eurosat datasets. The performance of the proposed HFEL–CCGSA is analyzed in terms of accuracy, precision and recall. The experimental results show that the HFEL–CCGSA method provides effective classification over the satellite images. The classification accuracy of the HFEL–CCGSA method is 99.99%, which is high when compared to AlexNet, LeNet-5 and ResNet.
In image segmentation field, the Fuzzy C-Means (FCM) algorithm is a well-known algorithm for its simplicity and membership function that can control the overlapped clusters effectively with a predefined number of clusters. Despite the fact, the standard FCM algorithm is noise sensitive. To solve the issue, we proposed a new method of clustering named Kernel Fuzzy C-means (KFCM) clustering. KFCM performed well in terms of clustering however, for pattern recognition KFCM has issues. The first one is grouping the similar objects in a single partition due to nonawareness of patterns and the second one is misclassification of data due to the standard structure of the membership subspace plane. Non-awareness of patterns of KFCM is solved by an Extreme Learning Machine (ELM) algorithm and Artificial Bee colony (ABC) algorithm utilized for optimizing the structure of the membership subspace plane. Experimental results showed that the proposed KFCM algorithm performed better segmentation for pattern recognition. At last effectiveness of the proposed algorithm has been evaluated based on comparing the K Means, FCM, spatial FCM, and KFCM algorithms in terms of centroids, segmentation accuracy, and pixel error. The proposed methodology improved the segmentation accuracy up to 0.8-5.5% compared to the existing methods.
Nowadays, the Long-Term Evolution-Advanced system is widely used to provide 5G communication due to its improved network capacity and less delay during communication. The main issues in the 5G network are insufficient user resources and burst errors, because it creates losses in data transmission. In order to overcome this, an effective Radio Resource Management (RRM) is required to be developed in the 5G network. In this paper, the Long Short-Term Memory (LSTM) network is proposed to develop the radio resource management in the 5G network. The proposed LSTM-RRM is used for assigning an adequate power and bandwidth to the desired user equipment of the network. Moreover, the Grid Search Optimization (GSO) is used for identifying the optimal hyperparameter values for LSTM. In radio resource management, a request queue is used to avoid the unwanted resource allocation in the network. Moreover, the losses during transmission are minimized by using frequency interleaving and guard level insertion. The performance of the LSTM-RRM method has been analyzed in terms of throughput, outage percentage, dual connectivity, User Sum Rate (USR), Threshold Sum Rate (TSR), Outdoor Sum Rate (OSR), threshold guaranteed rate, indoor guaranteed rate, and outdoor guaranteed rate. The indoor guaranteed rate of LSTM-RRM for 1400 m of building distance improved up to 75.38% compared to the existing QOC-RRM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.