Summary Considerable details about microRNA (miRNA) biogenesis and regulation have been uncovered, however, little is known about the fate of the miRNA subsequent to target regulation. To gain insight into this process, we carried out kinetic analysis of a miRNA’s turnover following termination of its biogenesis, and during regulation of a target that is not subject to Ago2-mediated catalytic cleavage. By quantitating the number of molecules of the miRNA and its target in steady-state, and in the course of its decay, we found that each miRNA molecule was able to regulate at least 2 target transcripts, providing in vivo evidence that the miRNA is not irreversibly sequestered with its target, and that the non-slicing pathway of miRNA regulation is multiple-turnover. Using deep-sequencing, we further show that miRNA recycling is limited by target regulation, which promotes post-transcriptional modifications to the 3′ end of the miRNA, and accelerates the miRNA’s rate of decay. These studies provide new insight into the efficiency of miRNA regulation, which help to explain how a miRNA can regulate a vast number of transcripts, and identify one of the mechanisms that impart specificity to miRNA decay in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.