Background: NMDA receptor specifically NR2B subunit plays a major role in eliptogenisis. Antagonists at NR2B receptor site have importance in design of anticonvulsant agents. Some quinazolinones and oxazepine have inherent drug likeliness for anticonvulsant activity. In this research work in silico biological activity spectrum (BAS), ADME prediction, Log P predictions and docking was carried out. A library of quinazolinones with oxazepinone ring was designed, from this library 3-(6-halo-2-methyl-oxoquinazolin-3-(4H-yl)-2-(substituted phenyl)-2, 3-dihydro-1,3-oxazepine-4,7-dione (AMQ 1-5 ) were prioritized for actual synthesis and pharmacological screening for NMDA receptor antagonistic activity. Method: The prioritized molecules were synthesized and characterized by melting point, IR, 1 H-NMR, TLC and elemental analysis. AOT was performed to determine LD 50 of prioritized molecules, further compounds were evaluated for their in vivo antagonistic activity on NMDA induced convulsions in mice. Result: Prioritized molecules AMQ 1-5 exhibited potent antagonistic activity on NMDA receptor. Conclusion: The compound of series AMQ 1 and AMQ 5 were showed significant activity compared to standard memantine used in the assay.
Background: Regardless of the availability of all novel and earlier treatments, seizure control is notoriously complicated. In the hopes of discovering the latest and ultimate therapy, medicinal chemists will keep on to hunt for new antiepileptic compounds with high specificity and low CNS toxicity. The biological effects of benzodiazepine compounds have been examined. Benzene and a diazepine ring are fused together to form the chemical structure. Diverse combinations of moieties attached to the innermost structure in positions 1, 2, 5, and 7 the pharmacological qualities, effect potency, and pharmacokinetic conditions are all influenced by the various side groups. Method: This paper describes the synthesis of several 1H-benzo[b][1,5]diazepin-2(3H)-one derivatives. The substituents at N1 are benzoyl, 5-substituted-1,3,4-thiadiazoles-2-yl-aminoacetyl. Condensation of orthophenylene diamine with ethyl acetoacetate gave 7-substituted-4-methyl-1H-benzo[b][1,5]diazepin-2(3H)-ones, which were then linked to benzoyl chloride and chloroacetyl chloride to yield N1-benzoyl and N1-chloroacetyl derivatives. N1- chloroacetyl derivatives were further linked with 5-substituted-1,3,4-thiadiazoles amines using microwave irradiation. Result: IR, 1H-NMR, and mass spectroscopy were used to authenticate the synthesized compounds. The PTZ produced convulsions method was used to test the compounds for anticonvulsant activity. Compounds 4a and 4c gave 80% protection at 0.4 mg/kg, whereas Compounds 2a and 2c offered 80% protection at 20 and 30 mg/kg, respectively, when compared to the Control. Conclusion: When compared to a control, the experimental synthesis and pharmacological assessment of the 1,5-benzodiazepin-2-one moiety replaced with 1,3,4-thiadiazole yields a potentially active anticonvulsant drug.
Humans are now in a bioinformatics and chemo informatics century, where we can foresee data across domains like as healthcare, the environmental, technology, and public health. The use of information sharing in silico methodologies has impacted sickness administration by predicting the absorption, distribution, metabolism, excretion, and toxicity (ADMET) patterns of synthetic compounds and efficient and environmentally succeeding pharmaceuticals upfront. The purpose of lead discovery and design is to create the appearance of novel drug candidates that can attach to a specific illness cause. The lead investigative process starts with the recognition of the lead structure, which is followed by the synthesis of its analogs and their estimation in order to produce a candidate for lead improvement. The finding of the proper lead exact is the fundamental and primary worked in the traditional lead discovery progression, and the use of computer (in silico) approaches is widely used in lead innovation. A medicinal chemist's passion for building lead structure is piqued by biomolecules, which are often made up of DNA, RNA, and proteins (such as enzymes, receptors, transporters, and ion channels). The underlying principle of such nuts and bolts is noteworthy to be acquainted with their pharmacological implication to the disease under examination. The motive of this review piece of writing is to emphasize several of the in silico methods that are used in lead discovery and to express the applications of these computational methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.