The aim of this research is to enhance the accuracy of biometric palm print identification by using the Novel ResNet50 Algorithm as compared to the X Gradient Boosting. Materials and Methods: In this study, the ResNet50 and X Gradient Boosting algorithms were compared using a sample size of 10 for each algorithm, resulting in a total sample size of 20. The comparison was carried out with a G Power of 0.8 and a confidence interval (CI) of 95% to ensure statistical significance. For this study the Birjand University Mobile Palmprint Database (BMPD) dataset was collected from the Kaggle repository, which includes a total of 1640 images containing both left and right-hand palmprints. Result: According to the results, the ResNet50 algorithm achieved a higher accuracy rate (94.7%) compared to the X Gradient Boosting algorithm (92.4%) in identifying and measuring the images. The statistical analysis indicated a significant difference between the Novel ResNet50 algorithm and X Gradient Boosting, with a pvalue of 0.003 (Independent sample T-test p<0.05). This suggests that the ResNet50 algorithm outperformed the X Gradient Boosting algorithm in this experiment. According to the study’s findings, ResNet50 is more effective in accurately identifying biometric palm prints compared to X Gradient Boosting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.