In the past decade it has become clear that many microbes harbor enzymes that employ an unusual flavin cofactor, the F420 deazaflavin cofactor. Herein we show that F420-dependent reductases (FDRs) can successfully perform enantio-, regio- and chemoselective ene-reductions. For the first time, we have demonstrated that F420H2-driven reductases can be used as biocatalysts for the reduction of α,β-unsaturated ketones and aldehydes with good conversions (>99%) and excellent regioselectivities and enantiomeric excesses (>99% ee). Noteworthily, FDRs typically display an opposite enantioselectivity when compared to the well established FMN-dependent Old Yellow Enzymes (OYEs).
FH-dependent enzymes reduce a wide range of substrates that are otherwise recalcitrant to enzyme-catalyzed reduction, and their potential for applications in biocatalysis has attracted increasing attention. is a moderately thermophilic bacterium and holds high biocatalytic potential as a source for several highly thermostable enzymes. We report here on the isolation and characterization of a thermostable F: NADPH oxidoreductase (Tfu-FNO) from , the first F-dependent enzyme described from this bacterium. Tfu-FNO was heterologously expressed in , yielding up to 200 mg of recombinant enzyme per liter of culture. We found that Tfu-FNO is highly thermostable, reaching its highest activity at 65 °C and that Tfu-FNO is likely to act as an F reductase at the expense of NADPH, similar to its counterpart in We obtained the crystal structure of FNO in complex with NADP at 1.8 Å resolution, providing the first bacterial FNO structure. The overall architecture and NADP-binding site of Tfu-FNO were highly similar to those of the FNO (Af-FNO). The active site is located in a hydrophobic pocket between an N-terminal dinucleotide binding domain and a smaller C-terminal domain. Residues interacting with the 2'-phosphate of NADP were probed by targeted mutagenesis, indicating that Thr-28, Ser-50, Arg-51, and Arg-55 are important for discriminating between NADP and NAD Interestingly, a T28A mutant increased the kinetic efficiency >3-fold as compared with the wild-type enzyme when NADH is the substrate. The biochemical and structural data presented here provide crucial insights into the molecular recognition of the two cofactors, F and NAD(P)H by FNO.
During the last decade the number of characterized F420-dependent enzymes has significantly increased. Many of these deazaflavoproteins share a TIM-barrel fold and are structurally related to FMN-dependent luciferases and monooxygenases. In this work, we traced the origin and evolutionary history of the F420-dependent enzymes within the luciferase-like superfamily. By a thorough phylogenetic analysis we inferred that the F420-dependent enzymes emerged from a FMN-dependent common ancestor. Furthermore, the data show that during evolution, the family of deazaflavoproteins split into two well-defined groups of enzymes: the F420-dependent dehydrogenases and the F420-dependent reductases. By such event, the dehydrogenases specialized in generating the reduced deazaflavin cofactor, while the reductases employ the reduced F420 for catalysis. Particularly, we focused on investigating the dehydrogenase subfamily and demonstrated that this group diversified into three types of dehydrogenases: the already known F420-dependent glucose-6-phosphate dehydrogenases, the F420-dependent alcohol dehydrogenases, and the sugar-6-phosphate dehydrogenases that were identified in this study. By reconstructing and experimentally characterizing ancestral and extant representatives of F420-dependent dehydrogenases, their biochemical properties were investigated and compared. We propose an evolutionary path for the emergence and diversification of the TIM-barrel fold F420-dependent dehydrogenases subfamily.
Various furans are considered as valuable platform chemicals as they can be derived from plant biomass. Yet, for their exploitation, follow-up chemistry is required. Here we demonstrate that Baeyer-Villiger monooxygenases (BVMOs) can be used as biocatalysts for the selective oxidation of several furans, including 5-(hydroxymethyl) furfural (HMF) and furfural. A total of 15 different BVMOs were tested for their activity on furfural, which revealed that most of the biocatalysts were active on this aromatic aldehyde. Phenylacetone monooxygenase (PAMO) and a mutant thereof (PAMO M446G ) were selected for studying their biocatalytic potential in converting furfural and some other furans. While BVMOs are usually known to form an ester or lactone as a 'normal' product by inserting an oxygen atom adjacent to the carbonyl carbon of the substrate, our results reveal that both biocatalysts produce furanoid acids as the main product from the corresponding aldehydes. Altogether, our study shows that BVMOs can be employed for the selective oxidation of furans.
Mo/W-containing formate dehydrogenases (FDH) catalyzed the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. While in the reaction of formate oxidation, the product is CO2, which exits the active site via a hydrophobic channel; bicarbonate is formed as the first intermediate during the reaction at the active site. Other than what has been previously reported, bicarbonate is formed after an oxygen atom transfer reaction, transferring the oxygen from water to formate and a subsequent proton-coupled electron transfer or hydride transfer reaction involving the sulfido ligand as acceptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.