Process temperature (30, 40 and 50°C), syrup concentration (50, 60 and 70 o Brix) and process time (4, 5 and 6 h) for osmotic dehydration of papaya (Carica papaya) cubes were optimized for the maximum water loss and optimum sugar gain by using response surface methodology. The peeled and pre-processed papaya cubes of 1 cm size were immersed in sugar syrup at constant temperature water bath having syrup to papaya cubes ratio of 4:1 (w/w). The cubes were removed from bath at predecided time, rinsed with water and weighed. Initial moisture content of papaya samples were 87.5-88.5% (wb), which was reduced to 67.6-81.1% after osmotic dehydration in various experiments showing mass reduction, water loss and sugar gain in the range of 20.6-36.4, 23.2-44.5 and 2.5-8.1%, respectively. The weight reduction, water loss and sugar gain data were statistically analyzed and regression equation of second order were found the best fit for all the experimental data. Maximum water loss of 28% with optimum sugar gain of 4% was predicted for the 60 o Brix syrup concentration at 37°C for syrup to fruit ratio as 4:1 in 4.25 h of osmotic dehydration.
Context: High senstivity C-reactive protein (hsCRP) levels correlate well other parameters of obesity related metabolic syndrome (MS) and can be used as predictors of future cardiovascular disease risk. There is limited data on hsCRP levels in Indian children with simple obesity.
Aim:To study the relationship of hsCRP levels with various anthropometric as well as metabolic parameters in children with simple overweight and obesity.
Materials and Methods:This case control study was conducted in Paediatric Endocrinology clinic of a tertiary care hospital in Northern India. Levels of hsCRP were estimated in 100 overweight and obese children (BMI between 85 th and 95 th percentiles according to age & gender specific CDC 2000 growth charts) aged between 6 and 16 years and in 100 nearly age and sex matched healthy controls. These levels were then correlated to various anthropometric (body mass index, BMI; waist circumference, WC; hip circumference, HC; waist hip ratio, WHR; blood pressure) and biochemical (fasting blood glucose, FBG; total cholesterol, TC; high-density lipoproteincholesterol, HDL-C; low-density lipoprotein cholesterol, LDL-C; very low-density lipoprotein-cholesterol, VLDL-C; triglycerides, TG) parameters.Results: Mean levels of hsCRP were significantly higher in the study group (3.92±2.20 versus 2.15±1.05 mg/L) as compared to controls. Significantly more (58% versus 10%) subjects in the study group had hsCRP (>3 mg/L). Of all the parameters studied, only BMI showed a positive correlation with hsCRP levels in the study group. Multiple logistic regression analysis for predicting outcome of high hsCRP showed positive correlation with BMI; with every 1 kg/m 2 increase in BMI, odds of high hsCRP level were increased by 37% (OR=1.37; 95% CI 1.23-1.53, p-value <0.0001). Mean values of all the biochemical parameters except HDL-C were significantly higher in the study group.Conclusion: Levels of hsCRP were significantly elevated in overweight and obese children as compared to non-obese children. In addition, these patients also showed abnormalities of lipid and glucose metabolism.
Response surface methodology was used to investigate the effect of brine concentration (10% -20%) solution temperature (35˚C -55˚C), and duration of osmosis (30 -60 min) with respect to water loss (WL) and salt gain (SG). The solution to sample ratio of 5/1 (w/w) was used. The Box-Behnken design of three variables and three levels including seventeen experiments formed by five central points were used for optimizing input parameters. Linear, quadratic and interaction effects of three variables were analyzed with respect to water loss and solid gain. For each response, second order polynomial models were developed using multiple regression analysis. Analysis of variance (ANOVA) was performed to check the adequacy and accuracy of the fitted models. The response surfaces and contour maps showing the interaction of process variables were constructed. The optimum operating conditions were: solution temperature 44.89˚C, brine concentration of 16.53 per cent and duration of osmosis of 47.59 min. At this optimum point, water loss and salt gain were predicted to be 44.55 per cent and 2.98 per cent respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.