Our recent studies showed that nanowire based DSSCs exhibited over 250 mV higher open circuit potentials (V OC ) compared to those using nanoparticles. In this study, the electron transport and surface properties of nanowires and nanoparticles are investigated to understand the reasons for the observed higher photovoltages with NW based solar cells. It was seen that, in addition to slow recombination kinetics, the lower work function of SnO 2 nanowires compared to the nanoparticle counterparts also significantly contributes to the high V OC observed for the nanowire based DSSCs.
The field-dependent photocurrent spectrum of individual carbon nanotubes is measured using a displacement photocurrent technique. A series of peaks is observed in the photocurrent corresponding to both excitonic and free carrier transitions. The photocurrent peak corresponding to the ground state exciton increases by a factor of 200 beyond a critical electric field, and shows both red and blue shifts depending on the field regime. This provides evidence for field-induced mixing between excitonic and free carrier states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.