This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
AbstractAim: We explore the phylogeography of Himalayan wolves using multiple genetic markers applied on a landscape-scale dataset and relate our findings to the biogeographic history of the region. Location: Himalayas of Nepal, the Tibetan Plateau of China and mountain ranges of Central Asia. Taxon: Himalayan wolf (also called the Tibetan wolf), Canis lupus chanco. Methods: We present a large-scale, non-invasive study of Himalayan wolves from across their estimated range. We analysed 280 wolf scat samples from western China, Kyrgyzstan and Tajikistan at two mtDNA loci, 17 microsatellite loci, four nonsynonymous SNPs in three nuclear genes related to the hypoxia pathway, and ZF genes on both sex chromosomes. | 1273 WERHAHN Et Al.
Chinese Pangolins (Manis pentadactyla) are Critically Endangered and one of the most illegally traded mammals globally. We generated first COI sequences from five individuals of this species from Nepal. BLASTn search of our 600 bp sequences at GenBank showed pair-wise identity between 99.17% and 100% to M. pentadactyla. There were three haplotypes and a total of five variable sites among five M. pentadactyla sequences. Neighbor-joining tree revealed that all M. pentadactyla from Nepal clustered into same group further splitting into two subgroups albeit with low bootstrap value, suggesting potential multiple geographic origins. The K2P distance was 0.3% within group and 0.7% between four sequences from Bhaktapur and Kavrepalanchok districts (Mape2, Mape3, Mape5 and Mape6) and museum sample (Mape10). This study has generated reference samples for M. pentadactyla from Nepal and will be helpful in understanding dynamics of illegal trade of this species and in successful identification of M. pentadactyla from Nepal even in the absence of intact specimens.
Mycobacterium tuberculosis has become the cause for one of the most dreadful disease which the mankind has ever known i.e. Tuberculosis. The organism holds the ability to infect multiple organs at a time resulting in multiple symptomatic presentations in pathogenic condition while in non-pathogenic condition, it can lay dormant and remain asymptomatic. The research work presented here aimed at sequencing of Rifampicin Resistance Determining Region (RRDR) of the rpoB gene present in phenotypically multidrug resistant M. tuberculosis. The findings showed that the major point of mutations to be present within this region was at codon 516, 526, and 531. Early diagnosis of multidrug resistance in any pathogen has become a pre -requisite for proper treatment and efficient elimination of pathogenic organisms from the host with minimal toxicity. Similarly, understanding the mutation dynamics of target genes also help in novel drug design and discovery.
Background: The search for potential natural bioactive compounds has been carried out for a long time. Researchers working in the field of natural product chemistry are starting to realize the importance of ethnomedicinal knowledge. Methodology: The aim of this study was to carry out preliminary analysis of different plants to understand their therapeutic potential.To this end, methanolic extracts were prepared from four different plant specimens. ntimicrobial, antioxidant and cytotoxicity assays were carried out at different concentrations of the extracts. Results: The highest percentage yield by methanol extraction was achieved from Sapindus murokosii. Phytochemical analysis detected presence of different types of secondary metabolites present in these species. Among the plants selected, Ficus religiosa showed the highest quantity of phenolics and flavonoids content along with lowest IC50 and LC50 for anti-oxidant activity and cytotoxicity assay respectively. Conclusion: The results obtained leads to the conclusion that the selected plants might be possessing strong therapeutics which can be further analyzed for isolation and identification of bioactive compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.