Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late-combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.
Gas Composition Effects in a CI Engine Converted to SI Natural Gas Operation Hemanth Kumar BommisettyLow-carbon fuels such as natural gas (NG) have the potential to lower the demand of petroleum-based fuels, reduce engine-out emissions, and increase IC engine thermal efficiency.One of the most rapid and efficient use of NG in the transportation sector would be as a direct replacement of the diesel fuel in compression ignition (CI) engines without any major engine modifications to the combustion chamber such as new pistons and/or engine head. An issue is the large variation in NG composition with the location and age of the gas well across U.S., which would affect engine operation, as well as the technology integration with emissions after treatment systems. This thesis describes the use a conventional CI engine modified for spark ignition (SI) NG operation to investigate the effects of methane and a C1-C4 alkane blend on main combustion parameters like in-cylinder pressure, apparent heat release rate, IMEP, etc.Steady-state engine experiments were conducted at several operating conditions that changed spark timing, engine speed, and equivalence ratio. The study found that C1-C4 alkane blend operation increased peak pressure, IMEP, and indicated thermal efficiency compared to methane, for all the operating conditions investigated in this work. This suggests caution when translating methane-based experimental observations to real world NG operation, even for NG with high methane percentage as the one used in this work. As many NG studies in the literature used methane as an NG surrogate, a better understanding of real fuel effects in diesel-like combustion environments could be important for the successful conversion of conventional diesel engines to NG operation.iii Dedication This thesis is dedicated to my family and my friends iv AcknowledgementsFirstly, I would like to thank my family, especially to my mother -Uma Maheswari, sister -Nikitha Bommisetty and my grandfather -Eswaraiah, for all the support (morally and financially) they provided me, which drove me all the way till here. Their love and sacrifices are the main reasons which made it possible to continue my higher studies abroad, for which I'm very grateful to them.
Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.
Partial conversion of the large inventory of diesel engines to natural gas (NG) spark-ignition (SI) will reduce U.S. dependence on imported petroleum and enhance national energy security. This paper describes the methodology used to retrofit such an engine as well as the experimental setup used to investigate and optimize the conversion, including engine modifications, coupled dynamometer, engine control, and data acquisition system. Low-pressure gas injectors placed upstream of the intake valve produced a homogeneous combustible mixture inside the cylinder. The final setup was verified via experiments that changed the equivalence ratio from 0.7 to 1.0 at 900 rpm, using methane as a natural gas surrogate. The results showed that despite the higher compression ratio (which increased in-cylinder pressure and temperature at spark timing compared to conventional SI engines), a high-energy spark plug was necessary to produce robust and repeatable ignition. In addition, the moderate compression ratio of the converted engine (13.3) resulted in knock-free operation at all equivalence ratios. Finally, the reliable and stable operation at the investigated conditions (COVIMEP < 1.5%) and low rate of pressure rise (< 3 bar/deg CA) support this solution for converting diesel engines to NG SI operation, at least for the conditions investigated here. The trend of engine-out emissions agreed well with existing studies, which also validated the design of the test cell for optimizing engine efficiency and sampling emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.