BackgroundQuantitative knowledge on the anatomy of the medial collateral ligament (MCL) is important for treatment of MCL injury and for MCL release during total knee arthroplasty (TKA). The objective of this study was to quantitatively determine the morphology of the MCL of human knees.Methods10 cadaveric human knees were dissected to investigate the MCL anatomy. The specimens were fixed in full extension and this position was maintained during the dissection and morphometric measurements. The outlines of the insertion sites of the superficial MCL (sMCL) and deep MCL (dMCL) were digitized using a 3D digitizing system.ResultsThe insertion areas of the superficial MCL (sMCL) were 348.6 ± 42.8 mm2 and 79.7 ± 17.6 mm2 on the tibia and femur, respectively. The insertion areas of the deep MCL (dMCL) were 63.6 ± 13.4 mm2 and 71.9 ± 14.8 mm2 on the tibia and femur, respectively. The distances from the centroids of the tibial and femoral insertions of the sMCL to the tibial and femoral joint line were 62.4 ± 5.5 mm and 31.1 ± 4.6 mm, respectively. The distances from the centroids of dMCL in the tibial insertion and the femoral insertion to the tibial and femoral joint line were 6.5 ± 1.3 mm and 20.5 ± 4.2 mm, respectively. The distal portion of the dMCL (meniscotibial ligament - MTL) was approximately 1.7 times wider than the proximal portion of the dMCL (meniscofemoral ligament - MFL), whereas the MFL was approximately 3 times longer than the MTL.ConclusionsThe morphologic data on the MCL may provide useful information for improving treatments of MCL-related pathology and performing MCL release during TKA.
Background Tunnels created for reconstruction of a torn anterior cruciate ligament (ACL) are critical determinants of joint stability and clinical outcomes. There is limited objective evidence on the ability of transtibial (TT), anteromedial (AM) portal, and outside-in (OI) operative techniques in creating anatomic tunnels. Hypothesis (1) Tibial tunnel–independent techniques can create tunnels more accurately at the anatomic ACL footprint center than the TT technique, and (2) femoral tunnel exit location of the OI and TT techniques on the lateral cortex will be significantly further away from the lateral epicondyle than the femoral tunnel exit location of the AM portal technique. Study Design Controlled laboratory study. Methods Eight cadaveric knee specimens with a mean age of 56 years were used in this study. A digitizing system was used to record points along the outlines of the ACL insertion area and apertures of tunnels created by the TT, AM portal, and OI techniques. The following parameters were measured from the digitized points: (1) amount of ACL, anteromedial bundle, and posterolateral bundle coverage by the tunnels; (2) relationship between the centers of the ACL and the tunnels; and (3) distance between the center of the femoral tunnel exit and the lateral epicondyle. All the recorded parameters were analyzed in 3-dimensional solid modeling software. Results The percentage of ACL footprint coverage achieved by all 3 surgical techniques was not significantly different from one another. However, larger femoral posterolateral bundle coverage was observed in tunnels created by the AM portal and OI techniques than in the TT tunnel. In terms of anteromedial bundle coverage, no significant differences were observed between the 3 techniques. On average, 27.1% ± 17.4% of the TT tunnel was outside the ACL footprint. This was significantly larger compared with 13.6%± 15.7% with the AM portal technique (P = .01) and 10.8%± 10.8% in the OI technique (P = .01). Centers of femoral tunnels created by the TT, AM portal, and OI techniques were located at a distance of 3.0 ± 1.5 mm, 2.1 ± 0.9 mm, and 1.5 ± 1.2 mm, respectively, from the ACL footprint center. The femoral tunnel exit location of the AM portal technique on the lateral femoral cortex was closer to the lateral epicondyle than the femoral tunnel exit location of the OI and TT techniques. Conclusion Findings of this study indicate that a larger posterolateral bundle coverage is achieved by the AM portal and OI techniques than by the TT technique. Centers of the tunnels created by the AM portal and OI techniques were closer to the native ACL footprint center than the center of the TT technique tunnel. The incidence of a posterior femoral tunnel exit relative to the lateral epicondyle is higher in the AM portal technique than in the OI and TT techniques. Clinical Relevance For ACL reconstruction using soft tissue grafts, tibial tunnel–independent techniques can produce more anatomic tunnels than the TT technique.
Background Anterior cruciate ligament (ACL) deficiency alters 6 degrees of freedom knee kinematics, yet only anterior translation and internal rotation have been the primary measures in previous studies. Purpose To compare the 6 degrees of freedom knee kinematics and the graft forces after single- and double-bundle ACL reconstructions under various external loading conditions. Study Design Controlled laboratory study. Methods Ten human cadaveric knees were tested with a robotic testing system under 4 conditions: intact, ACL deficient, single-bundle reconstructed with a quadrupled hamstring tendon graft, and double-bundle reconstructed with 2 looped hamstring tendon grafts. Knee kinematics and forces of the ACL or ACL graft in each knee were measured under 3 loading conditions: an anterior tibial load of 134 N, a simulated quadriceps muscle load of 400 N, and combined tibial torques (10 N·m valgus and 5 N·m internal tibial torques) at 0°, 15°, 30°, 60°, and 90° of knee flexion. Results The double-bundle reconstruction restored the anterior and medial laxities closer to the intact knee than the single-bundle reconstruction. However, the internal rotation of the tibia under the simulated quadriceps muscle load was significantly decreased when compared with the intact knee after both reconstructions, more so after double-bundle reconstruction (P < .05). The entire graft force of the double-bundle reconstruction was more similar to that of the intact ACL than that of the single-bundle reconstruction. However, the posterolateral bundle graft in the double-bundle reconstructed knee was overloaded as compared with the intact posterolateral bundle. Conclusion The double-bundle reconstruction can better restore the normal anterior-posterior and medial-lateral laxities than the single-bundle reconstruction can, but an overloading of the posterolateral bundle graft can occur in a double-bundle reconstructed knee. Clinical relevance Both single-bundle and double-bundle techniques cannot restore the rotational laxities and the ACL force distributions of the intact knee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.