Nanoparticle internalisation is crucial for the precise delivery of drug/genes to its intracellular targets. Conventional quantification strategies can provide the overall profiling of nanoparticle biodistribution, but fail to unambiguously differentiate the intracellularly bioavailable particles from those in tumour intravascular and extracellular microenvironment. Herein, we develop a binary ratiometric nanoreporter (BiRN) that can specifically convert subtle pH variations involved in the endocytic events into digitised signal output, enabling the accurately quantifying of cellular internalisation without introducing extracellular contributions. Using BiRN technology, we find only 10.7–28.2% of accumulated nanoparticles are internalised into intracellular compartments with high heterogeneity within and between different tumour types. We demonstrate the therapeutic responses of nanomedicines are successfully predicted based on intracellular nanoparticle exposure rather than the overall accumulation in tumour mass. This nonlinear optical nanotechnology offers a valuable imaging tool to evaluate the tumour targeting of new nanomedicines and stratify patients for personalised cancer therapy.
Anticancer immunotherapy is hampered by poor immunogenicity and a profoundly immunosuppressive microenvironment in solid tumors and lymph nodes. Herein, sequential pH/redoxresponsive nanoparticles (SRNs) are engineered to activate the immune microenvironment of tumor sites and lymph nodes. The twomodular SRNs could sequentially respond to the acidic tumor microenvironment and endosome compartments of dendritic cells (DCs) to precisely deliver doxorubicin (DOX) and imidazoquinolines (IMDQs). In the tumor microenvironment, released DOX triggers immunogenic cell death. In sentinel lymph nodes, the IMDQ nanoparticle module is dissociated in the acidic endosome compartment to specifically stimulate toll-like receptor 7/8 for DC maturation. Thus, the orchestrated nanoparticle system could enhance the infiltration of CD8α + T cells in tumors and provoke a strong antitumor immune response toward primary and abscopal tumors in B16-OVA and CT26 tumor-bearing mice models. The cooperative self-assembled nanoparticle strategy provides a potential candidate of nanomedicine to advance the synergistic cancer chemo-immunotherapy.
Noninvasive imaging strategies have been extensively investigated for in vivo mapping of sentinel lymph nodes (SLNs). However, the current imaging strategies fail to accurately assess tumor metastatic status in SLNs with high sensitivity. Here we report pH‐amplified self‐illuminating near‐infrared nanoparticles, which integrate chemiluminescence resonance energy transfer (CRET) and signal amplification strategy, enabling accurate identification of metastatic SLNs. After draining into lymph nodes, the nanoparticles were phagocytosed and dissociated in acidic phagosomes of inflammatory macrophages to emit near‐infrared luminescent light. Using these nanoparticles, we successfully differentiated tumor metastatic lymph nodes from benign ones. These nanoparticles also exhibited excellent imaging capability for early detection of metastatic SLNs in diverse animal tumor models with small tumor volume (100–200 mm3).
Toll-like receptor (TLR) agonists are potent immune-stimulators that hold great potential in vaccine adjuvants as well as cancer immunotherapy. However, TLR agonists in free form are prone to be eliminated quickly by the circulatory system and cause systemic inflammation side effects. It remains a challenge to achieve precise release of TLR7/8 agonist in the native form at the receptor site in the endosomal compartments while keeping stable encapsulation and inactive in nontarget environment. Here, we report a pH-/enzyme-responsive TLR7/8 agonist-conjugated nanovaccine (TNV), which responds intelligently to the acidic environment and cathepsin B in the endosome, precisely releases TLR7/8 agonist to activate its receptor signaling at the endosomal membrane, stimulates DCs maturation, and provokes specific cellular immunity. In vivo experiments demonstrate outstanding prophylactic and therapeutic efficacy of TNV in mouse melanoma and colon cancer. The endosome-targeted responsive nanoparticle strategy provides a potential delivery toolbox of adjuvants to advance the development of tumor nanovaccines.
Distinct from carbon nanotubes, transition-metal dichalcogenide (TMD) nanotubes are noncentrosymmetric and polar and can exhibit some intriguing phenomena such as nonreciprocal superconductivity, chiral shift current, bulk photovoltaic effect, and exciton-polaritons. However, basic characterizations of individual TMD nanotubes are still quite limited, and much remains unclear about their structural chirality and electronic properties. Here we report an optical second-harmonic generation (SHG) study on multiwalled WS 2 nanotubes on a single-tube level. As it is highly sensitive to the crystallographic symmetry, SHG microscopy unveiled multiple structural domains within a single WS 2 nanotube, which are otherwise hidden under conventional white-light optical microscopy. Moreover, the polarization-resolved SHG anisotropy patterns revealed that different domains on the same tube can be of different chirality. In addition, we observed the excitonic states of individual WS 2 nanotubes via SHG excitation spectroscopy, which were otherwise difficult to acquire due to the indirect band gap of the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.