Spoofing countermeasures aim to protect automatic speaker verification systems from being manipulated by spoofed speech signals. While results from the most recent ASVspoof 2019 evaluation show great potential to detect most forms of attack, some continue to evade detection. This paper reports the first application of RawNet2 to anti-spoofing. RawNet2 ingests raw audio and has potential to learn cues that are not detectable using more traditional countermeasure solutions. We describe modifications made to the original RawNet2 architecture so that it can be applied to anti-spoofing. For A17 attacks, our RawNet2 systems results are the second-best reported, while the fusion of RawNet2 and baseline countermeasures gives the second-best results reported for the full ASVspoof 2019 logical access condition. Our results are reproducible with open source software.
Artefacts that differentiate spoofed from bona-fide utterances can reside in spectral or temporal domains. Their reliable detection usually depends upon computationally demanding ensemble systems where each subsystem is tuned to some specific artefacts. We seek to develop an efficient, single system that can detect a broad range of different spoofing attacks without score-level ensembles. We propose a novel heterogeneous stacking graph attention layer which models artefacts spanning heterogeneous temporal and spectral domains with a heterogeneous attention mechanism and a stack node. With a new max graph operation that involves a competitive mechanism and an extended readout scheme, our approach, named AA-SIST, outperforms the current state-of-the-art by 20% relative. Even a lightweight variant, AASIST-L, with only 85K parameters, outperforms all competing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.