Possibility theory is applied to introduce and reason about the fundamental notion of a key for uncertain data. Uncertainty is modeled qualitatively by assigning to tuples of data a degree of possibility with which they occur in a relation, and assigning to keys a degree of certainty which says to which tuples the key applies. The associated implication problem is characterized axiomatically and algorithmically. Using extremal combinatorics, we then characterize the families of non-redundant possibilistic keys that attain maximum cardinality. In addition, we show how to compute for any given set of possibilistic keys a possibilistic Armstrong relation, that is, a possibilistic relation that satisfies every key in the given set and violates every possibilistic key not implied by the given set. We also establish an algorithm for the discovery of all possibilistic keys that are satisfied by a given possibilistic relation. It is shown that the computational complexity of computing possibilistic Armstrong relations is precisely exponential in the input, and the decision variant of the discovery problem is NP-complete as well as W[2]-complete in the size of the possibilistic key. Further applications of possibilistic keys in constraint maintenance, data cleaning, and query processing are illustrated by examples. The computation of possibilistic Armstrong relations and discovery of possibilistic keys from possibilistic relations have been implemented as prototypes. Extensive experiments with these prototypes provide insight into the size of possibilistic Armstrong relations and the time to compute them, as well as the time it takes to compute a cover of the possibilistic keys that hold on a possibilistic relation, and the time it takes to remove any redundant possibilistic keys from this cover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.