Folding within the crowded cellular milieu often requires assistance from molecular chaperones that prevent inappropriate interactions leading to aggregation and toxicity. The contribution of individual chaperones to folding the proteome remains elusive. We here demonstrate that the eukaryotic chaperonin TRiC/CCT (TCP1-Ring Complex or Chaperonin Containing TCP1) has broad binding specificity in vitro similar to the prokaryotic chaperonin GroEL. However, in vivo TRiC substrate selection is not based solely on intrinsic determinants; instead, specificity is dictated by factors present during protein biogenesis. The identification of cellular substrates revealed that TRiC interacts with folding intermediates of a subset of structurally and functionally diverse polypeptides. Bioinformatics analysis revealed an enrichment in multidomain proteins and regions of beta strand propensity that are predicted to be slow-folding and aggregation-prone. Thus, TRiC may have evolved to protect complex protein topologies within its central cavity during biosynthesis and folding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.