For managing the freshwater in the worldwide coastal aquifers, it is imperative to understand the hydrogeochemical processes and flow patterns in the mixing freshwater/saltwater zone. The Egyptian Nile Delta aquifer is a typical example. The management of seawater intrusion (SWI) requires detailed investigations of the intrusion wedge and the dynamic processes in the mixing zone. Thus, a multidisciplinary approach was applied based on holistic hydrogeochemical, statistical analysis, and DC resistivity measurements to investigate the lateral and vertical changes in groundwater characteristics undergoing salinization stressor. The results of cross plots and ionic deviations of major ions, hydrochemical facies evolution diagram (HFE-D), and seawater mixing index (SMI) were integrated with the resistivity results to show the status of the SWI where the intrusion phase predominates in ~2/3 of the study are (~70 km radius) and the compositional thresholds of Na, Mg, Cl, and SO4 are 600, 145, 1200, and 600 mg/L, respectively, indicating that the wells with higher concentrations than these thresholds are affected by SWI. Moreover, the results demonstrate the efficiency of combining hydrogeochemical facies from heatmap and resistivity investigations to provide a large-scale characterization of natural and anthropogenic activities controlling aquifer salinization to support decision-makers for the long-term management of coastal groundwater.
Wadi El Raiyan is a great depression located southwest of Cairo in the Western Desert of Egypt. Lake Qarun, located north of the study area, is a closed basin with a high evaporation rate. The source of water in the lake is agricultural and municipal drainage from the El Faiyum province. In 1973, Wadi El Raiyan was connected with the agricultural wastewater drainage system of the Faiyum province and received water that exceeded the capacity of Lake Qarun. Two hydrogeological regimes have been established in the area: (i) higher cultivated land and (ii) lower Wadi El Raiyan depression lakes. The agricultural drainage water of the cultivated land has been collected in one main drain (El Wadi Drain) and directed toward the Wadi El Raiyan depression, forming two lakes at different elevations (upper and lower). In the summer of 2012, the major chemical components were studied using data from 36 stations distributed over both hydrogeological regimes in addition to one water sample collected from Bahr Youssef, the main source of freshwater for the Faiyum province. Chemical analyses were made collaboratively. The major ion geochemical evolution of the drainage water recharging the El Raiyan depression was examined. Geochemically, the Bahr Youssef sample is considered the starting point in the geochemical evolution of the studied surface water. In the cultivated area, major-ion chemistry is generally influenced by chemical weathering of rocks and minerals that are associated with anthropogenic inputs, as well as diffuse urban and/or agricultural drainage. In the depression lakes, the water chemistry generally exhibits an evaporation-dependent evolutionary trend that is further modified by cation exchange and precipitation of carbonate minerals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.