The protein EP300 and its paralog CREBBP (CREB-binding protein) are ubiquitously expressed transcriptional co-activators and histone acetyl transferases. The gene EP300 is essential for normal cardiac and neural development, whereas CREBBP is essential for neurulation, hematopoietic differentiation, angiogenesis and skeletal and cardiac development. Mutations in CREBBP cause Rubinstein-Taybi syndrome, which is characterized by mental retardation, skeletal abnormalities and congenital cardiac defects. The CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2) binds EP300 and CREBBP with high affinity and regulates gene transcription. Here we show that Cited2-/- embryos die with cardiac malformations, adrenal agenesis, abnormal cranial ganglia and exencephaly. The cardiac defects include atrial and ventricular septal defects, overriding aorta, double-outlet right ventricle, persistent truncus arteriosus and right-sided aortic arches. We find increased apoptosis in the midbrain region and a marked reduction in ErbB3-expressing neural crest cells in mid-embryogenesis. We show that CITED2 interacts with and co-activates all isoforms of transcription factor AP-2 (TFAP2). Transactivation by TFAP2 isoforms is defective in Cited2-/- embryonic fibroblasts and is rescued by ectopically expressed CITED2. As certain Tfap2 isoforms are essential in neural crest, neural tube and cardiac development, we propose that abnormal embryogenesis in mice lacking Cited2 results, at least in part, from its role as a Tfap2 co-activator.
Differential modifications of the genome during gametogenesis result in a functional difference between the paternal and maternal genomes at the moment of fertilization. A possible cause of this imprinting is the methylation of DNA. The insertion of foreign DNA into transgenic mice allows the tagging of regions that are differentially methylated during gametogenesis. We describe here a transgenic mouse strain in which the expression of the hepatitis B surface antigen gene is irreversibly repressed following its passage through the female germ line. This inhibition is accompanied by the methylation of all the HpaII and HhaI sites within the foreign gene, which we have shown to be integrated into a site on chromosome 13. The irreversibility reported here contrasts with what is found with other transgenic mice sequences which are reversibly methylated after passage through the male or female germ line, though in both cases methylation appears to be important in the imprinting process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.