Background and aim: Machine learning methods are examined by many researchers to identify weeds in crop images captured by drones. However, metaheuristic optimization is rarely used in optimizing the machine learning models used in weed classification. Therefore, this research targets developing a new optimization algorithm that can be used to optimize machine learning models and ensemble models to boost the classification accuracy of weed images. Methodology: This work proposes a new approach for classifying weed and wheat images captured by a sprayer drone. The proposed approach is based on a voting classifier that consists of three base models, namely, neural networks (NNs), support vector machines (SVMs), and K-nearest neighbors (KNN). This voting classifier is optimized using a new optimization algorithm composed of a hybrid of sine cosine and grey wolf optimizers. The features used in training the voting classifier are extracted based on AlexNet through transfer learning. The significant features are selected from the extracted features using a new feature selection algorithm. Results: The accuracy, precision, recall, false positive rate, and kappa coefficient were employed to assess the performance of the proposed voting classifier. In addition, a statistical analysis is performed using the one-way analysis of variance (ANOVA), and Wilcoxon signed-rank tests to measure the stability and significance of the proposed approach. On the other hand, a sensitivity analysis is performed to study the behavior of the parameters of the proposed approach in achieving the recorded results. Experimental results confirmed the effectiveness and superiority of the proposed approach when compared to the other competing optimization methods. The achieved detection accuracy using the proposed optimized voting classifier is 97.70%, F-score is 98.60%, specificity is 95.20%, and sensitivity is 98.40%. Conclusion: The proposed approach is confirmed to achieve better classification accuracy and outperforms other competing approaches.
Blockchain technology has emerged as a promising candidate for space exploration and sustainable energy systems. This transformative technology offers secure and decentralized strategies to process and manipulate space resources. Remote sensing provides viable potential with the coexistence of open data from various sources, such as short-range sensors on unmanned aerial vehicles (UAVs) or Internet-of-Things (IoT) tags and far-range sensors incorporated on satellites. Open data resources have most recently emerged as attractive connecting parties where owners have shown consent to share data. However, most data owners are anonymous and untrustworthy, which makes shared data likely insecure and unreliable. At present, there are several tools that distribute open data, serving as an intermediate party to link users with data owners. However, these platforms are operated by central authorities who develop guidelines for data ownership, integrity, and access, consequently restricting both users and data owners. Therefore, the need and feasibility of a decentralized system arise for data sharing and retrieving without involving these intermediate limiting parties. This study proposes a blockchain-based system without any central authority to share and retrieve data. Our proposed system features (i) data sharing, (ii) maintaining the historical data, and (iii) retrieving and evaluation of data along with enhanced security. We have also discussed the use of blockchain algorithms based on smart contracts to track space transactions and communications in a secure, verifiable, and transparent manner. We tested the suggested framework in the Windows environment by writing smart contracts prototype on an Ethereum TESTNET blockchain. The results of the study showed that the suggested strategy is efficient, practicable, and free of common security attacks and vulnerabilities.
Tuberculosis is curable, still the world’s second inflectional murderous disease, and ranked 13th (in 2020) by the World Health Organization on the list of leading death causes. One of the reasons for its fatality is the unavailability of modern technology and human experts for early detection. This study represents a precise and reliable machine vision-based approach for Tuberculosis detection in the lung through Symmetry CT scan images. TB spreads irregularly, which means it might not affect both lungs equally, and it might affect only some part of the lung. That’s why regions of interest (ROI’s) from TB infected and normal CT scan images of lungs were selected after pre-processing i.e., selection/cropping, grayscale image conversion, and filtration, Statistical texture features were extracted, and 30 optimized features using F (Fisher) + PA (probability of error + average correlation) + MI (mutual information) were selected for final optimization and only 6 most optimized features were selected. Several supervised learning classifiers were used to classify between normal and infected TB images. Artificial Neural Network (ANN: n class) based classifier Multi-Layer Perceptron (MLP) showed comparatively better and probably best accuracy of 99% with execution time of less than a second, followed by Random Forest 98.83%, J48 98.67%, Log it Boost 98%, AdaBoostM1 97.16% and Bayes Net 96.83%.
Background: Alzheimer’s, the predominant formof dementia, is a neurodegenerative brain disorder with no known cure. With the lack of innovative findings to diagnose and treat Alzheimer’s, the number of middle-aged people with dementia is estimated to hike nearly to 13 million by the end of 2050. The estimated cost of Alzheimer’s and other related ailments is USD321 billion in 2022 and can rise above USD1 trillion by the end of 2050. Therefore, the early prediction of such diseases using computer-aided systems is a topic of considerable interest and substantial study among scholars. The major objective is to develop a comprehensive framework for the earliest onset and categorization of different phases of Alzheimer’s. Methods: Experimental work of this novel approach is performed by implementing neural networks (CNN) on MRI image datasets. Five classes of Alzheimer’s disease subjects are multi-classified. We used the transfer learning determinant to reap the benefits of pre-trained health data classification models such as the MobileNet. Results: For the evaluation and comparison of the proposed model, various performance metrics are used. The test results reveal that the CNN architectures method has the following characteristics: appropriate simple structures that mitigate computational burden, memory usage, and overfitting, as well as offering maintainable time. The MobileNet pre-trained model has been fine-tuned and has achieved 96.6 percent accuracy for multi-class AD stage classifications. Other models, such as VGG16 and ResNet50 models, are applied tothe same dataset whileconducting this research, and it is revealed that this model yields better results than other models. Conclusion: The study develops a novel framework for the identification of different AD stages. The main advantage of this novel approach is the creation of lightweight neural networks. MobileNet model is mostly used for mobile applications and was rarely used for medical image analysis; hence, we implemented this model for disease detection andyieldedbetter results than existing models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.