In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.
Sentiment Analysis (SA) is an active research area nowadays due to the tremendous interest in aggregating and evaluating opinions being disseminated by users on the Web. SA of English has been thoroughly researched; however research on SA of Arabic has just flourished. Twitter is considered a powerful tool for disseminating information and a rich resource for opinionated text containing views on many different topics. In this paper we attempt to bridge a gap in Arabic SA of Twitter which is the lack of sentiment lexicons that are tailored for the informal language of Twitter. We generate two lexicons extracted from a large dataset of tweets using two approaches and evaluate their use in a simple lexicon based method. The evaluation is performed on internal and external datasets. The performance of these automatically generated lexicons was very promising, albeit the simple method used for classification. The best F-score obtained was 89.58% on the internal dataset and 63.1-64.7% on the external datasets.
Fake news detection (FND) involves predicting the likelihood that a particular news article (news report, editorial, expose, etc.) is intentionally deceptive. Arabic FND started to receive more attention in the last decade, and many detection approaches demonstrated some ability to detect fake news on multiple datasets. However, most existing approaches do not consider recent advances in natural language processing, i.e., the use of neural networks and transformers. This paper presents a comprehensive comparative study of neural network and transformer-based language models used for Arabic FND. We examine the use of neural networks and transformer-based language models for Arabic FND and show their performance compared to each other. We also conduct an extensive analysis of the possible reasons for the difference in performance results obtained by different approaches. The results demonstrate that transformer-based models outperform the neural network-based solutions, which led to an increase in the F1 score from 0.83 (best neural network-based model, GRU) to 0.95 (best transformer-based model, QARiB), and it boosted the accuracy by 16% compared to the best in neural network-based solutions. Finally, we highlight the main gaps in Arabic FND research and suggest future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.