Co-pyrolysis of coal and biomass blend to produce hybrid coal has recently been experimentally studied by some previous researchers. For similar generated energy, a newly developed hybrid coal is claimed to be more environmentally friendly compared to the coal only due to the release of neutral CO2. To acquire a better understanding of co-pyrolysis of coal and biomass blend, an experiment had been carried out in a tubular furnace reactor. For this purpose, the blends of constant mass composition of 20 wt% sawdust and 80 wt% low-rank coal were used throughout the study. It was found from the experiment that approximately 42.1% carbon, and 1.6% of ash were produced from the co-pyrolysis blend. Then, a steady state simulation of co-pyrolysis was developed using Aspen Plus v8.8 to predict the hybrid coal carbon content and required heat to perform the co-pyrolysis. The model simulation showed that hybrid coal yielded 44.0% carbon, which was at 4.5% deviation from the experimental study. The model had also been successfully used to estimate heat required to produce hybrid coal. It predicted that the equivalent heat of 336.2 kW was required to produce hybrid coal from 1,000 kg/h blend feed. The heat generated by the modeling of sawdust biomass combustion for fuel purposes was also estimated to supply heat for endothermic co-pyrolysis. It was found that 1,000 kg/h sawdust was predicted to be equivalent to 371.4 kW. This suggests that for scaling up purpose, ratio of sawdust fuel to blend feed of 1:1.1 is sufficient for this process. Keywords: co-pyrolysis, hybrid coal, low-rank coal, sawdust, Aspen Plus
Indonesia’s lignite coal and sawdust production are 131,05 and 11,82 million tonnes, respectively, which are potential to become raw material of hybrid coal through co-pyrolysis. Hybrid coal utilization will reduce non-neutral CO2 emission, a part of CO2 emission released from combustion of biomass. The aim of this study is to determine the effects on biomass composition and co-pyrolysis retention time on reduction of non-neutral CO2 emission from combustion of hybrid coal in power plant. Co-pyrolysis was conducted in a vertical tubular furnace under an inert condition in atmospheric pressure and temperature 300° C. Biomass composition and co-pyrolysis retention time was varied from 20 to 40 %-mass and from 30 to 90 minutes, respectively. Hybrid coal was characterized with proximate, ultimate and calorific value analysis. The result of analysis was used as an input on simulation to determine reduction of non-neutral CO2 emission on hybrid coal combustion in power plant. An increase in co-pyrolysis retention time (CRT) from 30 to 90 minutes increases the CO2 emission from 13.25 to 13.30 %-vol. While increase in biomass composition from 20 to 40 %-mass reduce CO2 emission from 13.18 to 12.81 %-vol. Non-neutral CO2 emission reduction rises from 24.22 to 26.86 % along with the increased of biomass composition from 20 to 40 %-mass. Average of non-neutral CO2 emission reduction is about 26.30 % in all variation. CO2 emission of hybrid coal as fuel for power plant increased along with the increased of co-pyrolysis retention time (CRT), which was about 780-830 kg CO2/MWh. The highest CO2 emission was achieved from co-pyrolysis product hybrid coal utilization with 30 %-mass of biomass composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.