<span lang="EN-US">The exponentially increasing bioinformatics data raised a new problem: the computation time length. The amount of data that needs to be processed is not matched by an increase in hardware performance, so it burdens researchers on computation time, especially on drug-target interaction prediction, where the computational complexity is exponential. One of the focuses of high-performance computing research is the utilization of the graphics processing unit (GPU) to perform multiple computations in parallel. This study aims to see how well the GPU performs when used for deep learning problems to predict drug-target interactions. This study used the gold-standard data in drug-target interaction (DTI) and the coronavirus disease (COVID-19) dataset. The stages of this research are data acquisition, data preprocessing, model building, hyperparameter tuning, performance evaluation and COVID-19 dataset testing. The results of this study indicate that the use of GPU in deep learning models can speed up the training process by 100 times. In addition, the hyperparameter tuning process is also greatly helped by the presence of the GPU because it can make the process up to 55 times faster. When tested using the COVID-19 dataset, the model showed good performance with 76% accuracy, 74% F-measure and a speed-up value of 179.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.