The aim of this research is to investigate the alkali treatment influence on tensile strength physical and mechanical properties of agel leaf fibers (ALF). The presence of surface impurities and the large amount of hydroxyl groups make plant fibers less attractive for polymeric materials reinforcement. ALF were subjected to alkali treatments with 2 and 4% NaOH solutions for different soaking times of 1, 12, and 24 hours at room temperature. The tensile test of single fiber was done according to ASTM D3379-75 standard. The chemical changes and the fiber surface after alkali treatment were investigated by using Fourier transform-infrared (FTIR) and scanning electron microscopy (SEM), respectively. Tensile tests showed the alkali treatment of ALF results in different tensile strength compared to untreated ALF. The highest tensile strength (1464 MPa) is found for ALF immersed in 4% NaOH for 1 hour. FTIR showed that the hemicellulose and lignin components in the ALF are removed by NaOH treatment. SEM observation of the treated ALF showed the removal of impurities and the increase of roughness on the ALF surface with alkalization. These results show that alkali treatment can increase the tensile strength of ALF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.