Oligodendrocytes synthesize the CNS myelin sheath by enwrapping axonal segments with elongations of their plasma membrane. Spatial and temporal control of membrane traffic is a prerequisite for proper myelin formation. The major myelin proteolipid protein (PLP) accumulates in late endosomal storage compartments and multivesicular bodies (MVBs). Fusion of MVBs with the plasma membrane results in the release of the intralumenal vesicles, termed exosomes, into the extracellular space. Here, we show that cultured oligodendrocytes secrete exosomes carrying major amounts of PLP and 2'3'-cyclic-nucleotide-phosphodiesterase (CNP). These exosomes migrated at the characteristic density of 1.10-1.14 g/mL in sucrose density gradients. Treatment of primary oligodendrocytes with the calcium-ionophore ionomycin markedly increased the release of PLP-containing exosomes, indicating that oligodendroglial exosome secretion is regulated by cytosolic calcium levels. A proteomic analysis of the exosomal fraction isolated by sucrose density centrifugation revealed in addition to PLP and CNP, myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) as constituents of oligodendroglial exosomes, together with a striking group of proteins with proposed functions in the relief of cell stress. Oligodendroglial exosome secretion may contribute to balanced production of myelin proteins and lipids, but in addition exosomes may embody a signaling moiety involved in glia-mediated trophic support to axons.
Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/β1-integrin activation. PRG-1 deficiency reduces spine numbers and β1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of β1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation.
Proteasomes are the main cytosolic proteases responsible for generating peptides for antigen processing and presentation in the MHC (major histocompatibility complex) class-I pathway. Purified 20S and 26S proteasomes have been widely used to study both specificity and efficiency of antigen processing. Here, we describe the purification of active human 20S and 26S proteasomes from human erythrocytes by DEAE-ion exchange chromatography, ammonium sulfate precipitation, glycerol density gradient centrifugation, and Superose-6 size exclusion chromatography and their characterization using fluorogenic substrates and specific inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.