The twin-arginine translocation (Tat) system transports folded proteins across membranes of prokaryotes, plant plastids, and some mitochondria. According to blue-native polyacrylamide gel electrophoresis after solubilization with digitonin, distinct interactions between the components TatA, TatB, and TatC result in two major TatBC-containing complexes in Escherichia coli that can bind protein substrates. We now report the first detection of a TatABC complex that likely represents the state at which transport occurs. This complex was initially found when the photo cross-linking amino acid p -benzoyl- l -phenylalanine (Bpa) was introduced at position I50 on the periplasmic side of the first trans-membrane domain of TatC. Cross-linking of TatC I50Bpa resulted in TatC-TatC-cross-links, indicating a close proximity to neighboring TatC in the complex. However, the new complex was not caused by cross-links but rather by non-covalent side chain interactions, as it was also detectable without UV-cross-linking or with an I50Y exchange. The new complex did not contain any detectable substrate. It was slightly upshifted relative to previously reported substrate-containing TatABC complexes. In the absence of TatA, an inactive TatBC I50Bpa complex was formed of the size of wild-type substrate-containing TatABC complexes, suggesting that TatB occupies TatA-binding sites at TatC I50Bpa . When substrate binding was abolished by point mutations, this TatBC I50Bpa complex shifted analogously to active TatABC I50Bpa complexes, indicating that a defect substrate-binding site further enhances TatB association to TatA-binding sites. Only TatA could shift the complex with an intact substrate-binding site, which explains the TatA requirement for substrate transport by TatABC systems.
Biosynthetic pathways of natural products contain many enzymes that contribute to the rapid assembly of molecular complexity. Enzymes that form complex structural elements with multiple stereocenters, like chiral saturated oxygen heterocycles (CSOH), are of particular interest for a synthetic application, as their use promises to significantly simplify access to these elements. Here, the biocatalytic characterization of AmbDH3, an enzyme that catalyzes intramolecular oxa-Michael addition (IMOMA) is reported. This reaction essentially gives access to various types of CSOH with adjacent stereocenters, but it is not yet part of the repertoire of preparative biocatalysis. An in-depth study on the synthetic utility of AmbDH3 was performed, which made extensive use of complex synthetic precursor surrogates. The enzyme exhibited stability and broad substrate tolerance in in vitro experiments, which was in agreement with the results of molecular modeling. Its selectivity profile enabled kinetic resolution of chiral tetrahydropyrans (THPs) under control of up to four stereocenters. A systematic optimization of the reaction conditions enabled gram-scale conversions yielding preparative amounts of chiral THP. The synthetic utility of AmbDH3 was finally demonstrated by its successful application in the key step of a chemoenzymatic total synthesis to the THP-containing phenylheptanoid (−)-centrolobine. These results highlight the synthetic potential of AmbDH3 and related IMOMA cyclases as a biocatalytic alternative that further develops the available chemical-synthetic IMOMA methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.