This paper presents a novel partial differential equation (PDE)-based framework for controlling an ensemble of robots, which have limited sensing and actuation capabilities and exhibit stochastic behaviors, to perform mapping and coverage tasks. We model the ensemble population dynamics as an advection-diffusion-reaction PDE model and formulate the mapping and coverage tasks as identification and control problems for this model. In the mapping task, robots are deployed over a closed domain to gather data, which is unlocalized and independent of robot identities, for reconstructing the unknown spatial distribution of a region of interest. We frame this task as a convex optimization problem whose solution represents the region as a spatially-dependent coefficient in the PDE model. We then consider a coverage problem in which the robots must perform a desired activity at a programmable probability rate to achieve a target spatial distribution of activity over the reconstructed region of interest. We formulate this task as an optimal control problem in which the PDE model is expressed as a bilinear control system, with the robots' coverage activity rate and velocity field defined as the control inputs. We validate our approach with simulations of a combined mapping and coverage scenario in two environments with three target coverage distributions.
In this paper, we investigate the exact controllability properties of an advection-diffusion equation on a bounded domain, using time-and space-dependent velocity fields as the control parameters. This partial differential equation (PDE) is the Kolmogorov forward equation for a reflected diffusion process that models the spatiotemporal evolution of a swarm of agents. We prove that if a target probability density has bounded first-order weak derivatives and is uniformly bounded from below by a positive constant, then it can be reached in finite time using control inputs that are bounded in space and time. We then extend this controllability result to a class of advection-diffusion-reaction PDEs that corresponds to a hybridswitching diffusion process (HSDP), in which case the reaction parameters are additionally incorporated as the control inputs. For the HSDP, we first constructively prove controllability of the associated continuous-time Markov chain (CTMC) system, in which the state space is finite. Then we show that our controllability results for the advection-diffusion equation and the CTMC can be combined to establish controllability of the forward equation of the HSDP. Lastly, we provide constructive solutions to the problem of asymptotically stabilizing an HSDP to a target non-negative stationary distribution using timeindependent state feedback laws, which correspond to spatiallydependent coefficients of the associated system of PDEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.