The manufacturing of individualized products down to batch size 1 poses ongoing challenges for the design and integration of future production systems. Today's production lines with a high degree of automation achieve high efficiency, but usually come with high costs for adaptation to product variants. In order to combine full automation with high flexibility, we propose a concept for the dynamic composition of automation components in a modular production system that facilitates the rapid adaptation of collaborative and robotsupported manufacturing processes. To achieve this, we integrate self-descriptive automation components at runtime into the control architecture of the production system using a Plugand-Produce approach. While the location and orientation of automation components in the modular production system are derived from physical human-robot interaction, the adaptation and verification of the robot behavior is made possible through a simulation-based planning subsystem. Once this dynamic reconfiguration process by the machine setter is finished, the adapted production process is executed in a fully automated way with high efficiency. A case study carried out in an industrial collaboration project on flexible assembly demonstrates the benefits of the presented approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.