The internal energy of capacitive porous carbon electrodes was determined experimentally as a function of applied potential in aqueous salt solutions. Both the electrical work and produced heat were measured. The potential dependence of the internal energy is explained in terms of two contributions, namely the field energy of a dielectric layer of water molecules at the surface and the potential energy of ions in the pores. The average electric potential of the ions is deduced, and its dependence on the type of salt suggests that the hydration strength limits how closely ions can approach the surface.
The crystal structure of 5-fluorosalicylic acid is known from the literature [Choudhury & Guru Row (2004). Acta Cryst. E60, o1595-o1597] as crystallizing in the monoclinic crystal system with space-group setting P2/n and with one molecule in the asymmetric unit (polymorph I). We describe here a new polymorph which is again monoclinic but with different unit-cell parameters (polymorph II). Polymorph II has two molecules in the asymmetric unit. Its structure was modelled as a twin, with a pseudo-orthorhombic C-centred twin cell.
A calorimeter was built to measure the heat from a porous capacitive working electrode connected in a three-electrode configuration. This makes it possible to detect differences between cathodic and anodic heat production. The electrochemical cell contains a large electrolyte solution reservoir, ensuring a constant concentration of the salt solution probed by the reference electrode via a Luggin tube. A heat flux sensor is used to detect the heat, and its calibration as a gauge of the total amount of heat produced by the electrode is done based on the net electrical work performed on the working electrode during a full charging–discharging cycle. In principle, from the measured heat and the electrical work, the change in the internal energy of the working electrode can be determined as a function of the applied potential. Such measurements inform about the potential energy and average electric potential of ions inside the pores, giving insight into the electrical double layer inside electrode micropores. Example measurements of the heat are shown for porous carbon electrodes in an aqueous salt solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.